2023屆廣東省惠州市惠東燕嶺學校數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第1頁
2023屆廣東省惠州市惠東燕嶺學校數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第2頁
2023屆廣東省惠州市惠東燕嶺學校數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第3頁
2023屆廣東省惠州市惠東燕嶺學校數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第4頁
2023屆廣東省惠州市惠東燕嶺學校數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,的正切值為()A. B. C. D.2.若點A(2,),B(-3,),C(-1,)三點在拋物線的圖象上,則、、的大小關系是()A.B.C.D.3.如圖,水杯的杯口與投影面平行,投影線的幾方向如箭頭所示,它的正投影是()A. B. C. D.4.如圖,將繞點逆時針旋轉70°到的位置,若,則()A.45° B.40° C.35° D.30°5.已知反比例函數(shù)y=的圖象如圖所示,則二次函數(shù)y=ax2-2x和一次函數(shù)y=bx+a在同一平面直角坐標系中的圖象可能是()A. B. C. D.6.在平面直角坐標系中,將橫縱坐標之積為1的點稱為“好點”,則函數(shù)的圖象上的“好點”共有()A.1個 B.2個 C.3個 D.4個7.“學雷鋒”活動月中,“飛翼”班將組織學生開展志愿者服務活動,小晴和小霞從“圖書館,博物館,科技館”三個場館中隨機選擇一個參加活動,兩人恰好選擇同一場館的概率是()A. B. C. D.8.如圖,以原點O為圓心的圓交x軸于點A、B兩點,交y軸的正半軸于點C,D為第一象限內上的一點,若,則的度數(shù)是A.B.C.D.9.如圖,在ABCD中,對角線AC與BD相交于點O,過點O作EF⊥AC交BC于點E,交AD于點F,連接AE、CF.則四邊形AECF是()A.梯形 B.矩形 C.菱形 D.正方形10.某農機廠四月份生產零件50萬個,第二季度共生產零件182萬個.設該廠第二季度平均每月的增長率為,那么滿足的方程是()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,矩形ABCD中,AB=3cm,AD=6cm,點E為AB邊上的任意一點,四邊形EFGB也是矩形,且EF=2BE,則S△AFC=__________cm2.12.如圖,矩形ABOC的頂點B、C分別在x軸、y軸上,頂點A在第一象限,點B的坐標為(,0),將線段OC繞點O順時針旋轉60°至線段OD,若反比例函數(shù)(k≠0)的圖象進過A、D兩點,則k值為_____.13.已知⊙半徑為,點在⊙上,,則線段的最大值為_____.14.如圖,為測量某河的寬度,在河對岸邊選定一個目標點A,在近岸取點B,C,D,使得AB⊥BC,CD⊥BC,點E在BC上,并且點A,E,D在同一條直線上.若測得BE=10m,EC=5m,CD=8m,則河的寬度AB長為______________m.15.為測量學校旗桿的高度,小明的測量方法如下:如圖,將直角三角形硬紙板DEF的斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上.測得DE=0.5米,EF=0.25米,目測點D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米.按此方法,請計算旗桿的高度為_____米.16.小明練習射擊,共射擊次,其中有次擊中靶子,由此可估計,小明射擊一次擊中靶子的概率約為__________.17.從1,2,﹣3三個數(shù)中,隨機抽取兩個數(shù)相乘,積是偶數(shù)的概率是_____.18.如圖,C,D是拋物線y=(x+1)2﹣5上兩點,拋物線的頂點為E,CD∥x軸,四邊形ABCD為正方形,AB邊經過點E,則正方形ABCD的邊長為_____.三、解答題(共66分)19.(10分)如圖所示,在邊長為1的正方形組成的網格中,△AOB的頂點均在格點上,點A,B的坐標分別是A(3,3)、B(1,2),△AOB繞點O逆時針旋轉90°后得到△A1OB1.(1)畫出△A1OB1,直接寫出點A1,B1的坐標;(2)在旋轉過程中,點B經過的路徑的長.20.(6分)在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小完全相同,小明從布袋里隨機取出一個小球,記下數(shù)字為x,小紅在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y。(1)計算由x、y確定的點(x,y)在函數(shù)y=-x+5的圖象上的概率;(2)小明和小紅約定做一個游戲,其規(guī)則為:若x、y滿足xy>6則小明勝,若x、y滿足xy<6則小紅勝,這個游戲公平嗎?說明理由.若不公平,請寫出公平的游戲規(guī)則.21.(6分)如圖1是小區(qū)常見的漫步機,從側面看如圖2,踏板靜止時,踏板連桿與立柱上的線段重合,長為0.2米,當踏板連桿繞著點旋轉到處時,測得,此時點距離地面的高度為0.44米.求:(1)踏板連桿的長.(2)此時點到立柱的距離.(參考數(shù)據(jù):,,)22.(8分)如圖,四邊形ABCD內接于⊙O,點E在CB的延長線上,BA平分∠EBD,AE=AB.(1)求證:AC=AD.(2)當,AD=6時,求CD的長.23.(8分)綜合與探究如圖,拋物線經過點A(-2,0),B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設點D的橫坐標為.連接AC,BC,DB,DC,(1)求拋物線的函數(shù)表達式;(2)△BCD的面積等于△AOC的面積的時,求的值;(3)在(2)的條件下,若點M是軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.24.(8分)為了鞏固全國文明城市建設成果,突出城市品質的提升,近年來,我市積極落實節(jié)能減排政策,推行綠色建筑,據(jù)統(tǒng)計,我市2016年的綠色建筑面積約為950萬平方米,2018年達到了1862萬平方米.若2017年、2018年的綠色建筑面積按相同的增長率逐年遞增,請解答下列問題:(1)求這兩年我市推行綠色建筑面積的年平均增長率;(2)2019年我市計劃推行綠色建筑面積達到2400萬平方米.如果2019年仍保持相同的年平均增長率,請你預測2019年我市能否完成計劃目標?25.(10分)某企業(yè)為了解飲料自動售賣機的銷售情況,對甲、乙兩個城市的飲料自動售賣機進行抽樣調查,從兩個城市中所有的飲料自動售賣機中分別抽取16臺,記錄下某一天各自的銷售情況(單位:元)如下:甲:25、45、2、22、10、28、61、18、2、45、78、45、58、32、16、78乙:48、52、21、25、33、12、42、1、41、42、33、44、33、18、68、72整理、描述數(shù)據(jù):對銷售金額進行分組,各組的頻數(shù)如下:銷傳金額甲3643乙26ab分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)如下表所示:城市中位數(shù)平均數(shù)眾數(shù)甲C1.845乙402.9d請根據(jù)以上信息,回答下列問題:(1)填空:a=,b=,c=,d=.(2)兩個城市目前共有飲料自動售賣機4000臺,估計日銷售金額不低于40元的數(shù)量約為多少臺?(3)根據(jù)以上數(shù)據(jù),你認為甲、乙哪個城市的飲料自動售賣機銷售情況較好?請說明理由(一條理由即可).26.(10分)某學校從360名九年級學生中抽取了部分學生進行體育測試,并就他們的成績(成績分為A、B、C三個層次)進行分析,繪制了頻數(shù)分布表與頻數(shù)分布直方圖(如圖),請根據(jù)圖表信息解答下列問題:分組頻數(shù)頻率C100.10B0.50A40合計1.00(1)補全頻數(shù)分布表與頻數(shù)分布直方圖;(2)如果成績?yōu)锳層次的同學屬于優(yōu)秀,請你估計該校九年級約有多少人達到優(yōu)秀水平?

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)圓周角定理和正切函數(shù)的定義,即可求解.【詳解】∵∠1與∠2是同弧所對的圓周角,∴∠1=∠2,∴tan∠1=tan∠2=,故選A.【點睛】本題主要考查圓周角定理和正切函數(shù)的定義,把∠1的正切值化為∠2的正切值,是解題的關鍵.2、C【解析】首先求出二次函數(shù)的圖象的對稱軸x==2,且由a=1>0,可知其開口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在對稱軸的左側,而在對稱軸的左側,y隨x得增大而減小,所以.總結可得.故選C.點睛:此題主要考查了二次函數(shù)的圖像與性質,解答此題的關鍵是(1)找到二次函數(shù)的對稱軸;(2)掌握二次函數(shù)的圖象性質.3、D【解析】水杯的杯口與投影面平行,即與光線垂直,則它的正投影圖有圓形.【詳解】解:依題意,光線是垂直照下的,它的正投影圖有圓形,只有D符合,故選:D.【點睛】本題考查正投影的定義及正投影形狀的確定.4、D【分析】首先根據(jù)旋轉角定義可以知道,而,然后根據(jù)圖形即可求出.【詳解】解:∵繞點逆時針旋轉70°到的位置,∴,而,∴故選D.【點睛】此題主要考查了旋轉的定義及性質,其中解題主要利用了旋轉前后圖形全等,對應角相等等知識.5、C【分析】先根據(jù)拋物線y=ax2-2x過原點排除A,再由反比例函數(shù)圖象確定ab的符號,再由a、b的符號和拋物線對稱軸確定拋物線與直線y=bx+a的位置關系,進而得解.【詳解】∵當x=0時,y=ax2-2x=0,即拋物線y=ax2-2x經過原點,故A錯誤;∵反比例函數(shù)y=的圖象在第一、三象限,∴ab>0,即a、b同號,當a<0時,拋物線y=ax2-2x的對稱軸x=<0,對稱軸在y軸左邊,故D錯誤;當a>0時,b>0,直線y=bx+a經過第一、二、三象限,故B錯誤;C正確.故選C.【點睛】本題主要考查了一次函數(shù)、反比例函數(shù)、二次函數(shù)的圖象與性質,根據(jù)函數(shù)圖象與系數(shù)的關系進行判斷是解題的關鍵,同時考查了數(shù)形結合的思想.6、C【分析】分x≥0及x<0兩種情況,利用“好點”的定義可得出關于x的一元二次方程,解之即可得出結論.【詳解】當x≥0時,,即:,

解得:,(不合題意,舍去),當x<0時,,即:,

解得:,,∴函數(shù)的圖象上的“好點”共有3個.

故選:C.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征及解一元二次方程,分x≥0及x<0兩種情況,找出關于x的一元二次方程是解題的關鍵.7、A【分析】畫樹狀圖(用、、分別表示“圖書館、博物館、科技館”三個場館)展示所有9種等可能的結果數(shù),找出兩人恰好選擇同一場館的結果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:(用分別表示“圖書館,博物館,科技館”三個場館)共有9種等可能的結果數(shù),其中兩人恰好選擇同一場館的結果數(shù)為3,所以兩人恰好選擇同一場館的概率.故選A.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果,再從中選出符合事件或的結果數(shù)目,然后利用概率公式計算事件或事件的概率.8、D【分析】根據(jù)圓周角定理求出,根據(jù)互余求出∠COD的度數(shù),再根據(jù)等腰三角形性質即可求出答案.【詳解】解:連接OD,,,,,.故選D.【點睛】本題考查了圓周角定理,等腰三角形性質等知識.熟練應用圓周角定理是解題的關鍵.9、C【詳解】∵在ABCD中,對角線AC與BD相交于點O,∴AO=CO,∠AFO=∠CEO,∵在△AFO和△CEO中,∠AFO=∠CEO,∠FOA=∠EOC,AO=CO,∴△AFO≌△CEO(AAS),∴FO=EO,∴四邊形AECF平行四邊形,∵EF⊥AC,∴平行四邊形AECF是菱形,故選C.10、B【分析】由題意根據(jù)增長后的量=增長前的量×(1+增長率),如果該廠五、六月份平均每月的增長率為x,那么可以用x分別表示五、六月份的產量,進而即可得出方程.【詳解】解:設該廠五、六月份平均每月的增長率為x,那么得五、六月份的產量分別為50(1+x)、50(1+x)2,根據(jù)題意得50+50(1+x)+50(1+x)2=1.故選:B.【點睛】本題考查由實際問題抽象出一元二次方程的增長率問題,注意掌握其一般形式為a(1+x)2=b,a為起始時間的有關數(shù)量,b為終止時間的有關數(shù)量,x為增長率.二、填空題(每小題3分,共24分)11、9【解析】連接BF,過B作BO⊥AC于O,過點F作FM⊥AC于M.Rt△ABC中,AB=3,BC=6,.∵∠CAB=∠BAC,∠AOB=∠ABC,∴△AOB∽△ABC,,.∵EF=BG=2BE=2GF,BC=2AB,∴Rt△BGF和Rt△ABC中,,∴Rt△BGF∽Rt△ABC,∴∠FBG=∠ACB,∴AC∥BF,∴S△AFC=AC×FM=9.【點睛】△ACF中,AC的長度不變,所以以AC為底邊求面積.因為兩矩形相似,所以易證AC∥BF,從而△ACF的高可用BO表示.在△ABC中求BO的長度,即可計算△ACF的面積.12、4【分析】過點D作DH⊥x軸于H,四邊形ABOC是矩形,由性質有AB=CO,∠COB=90°,將OC繞點O順時針旋轉60°,OC=OD,∠COD=60°,可得∠DOH=30°,設DH=x,點D(x,x),點A(,2x),反比例函數(shù)(k≠0)的圖象經過A、D兩點,構造方程求出即可.【詳解】解:如圖,過點D作DH⊥x軸于H,∵四邊形ABOC是矩形,∴AB=CO,∠COB=90°,∵將線段OC繞點O順時針旋轉60°至線段OD,∴OC=OD,∠COD=60°,∴∠DOH=30°,∴OD=2DH,OH=DH,設DH=x,∴點D(x,x),點A(,2x),∵反比例函數(shù)(k≠0)的圖象經過A、D兩點,∴x×x=×2x,∴x=2,∴點D(2,2),∴k=2×2=4,故答案為:4.【點睛】本題考查反比例函數(shù)解析式問題,關鍵利用矩形的性質與旋轉找到AB=CO=OD,∠DOH=30°,DH=x,會用x表示點D(x,x),點A(,2x),利用A、D在反比例函數(shù)(k≠0)的圖象上,構造方程使問題得以解決.13、【分析】過點A作AE⊥AO,并使∠AEO=∠ABC,先證明,由三角函數(shù)可得出,進而求得,再通過證明,可得出,根據(jù)三角形三邊關系可得:,由勾股定理可得,求出BE的最大值,則答案即可求出.【詳解】解:過點A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根據(jù)三角形三邊關系可得:,∵,∴,∴BE的最大值為:,∴OC的最大值為:.【點睛】本題主要考查了三角形相似的判定和性質、三角函數(shù)、勾股定理及三角形三邊關系,解題的關鍵是構造直角三角形.14、16【分析】先證明,然后再根據(jù)相似三角形的性質求解即可.【詳解】∵AB⊥BC,CD⊥BC且∠AEB=∠DEC∴∴∴故本題答案為:16.【點睛】本題考查了相似三角形的應用,準確識圖,熟練掌握和靈活運用相似三角形的判定定理與性質定理是解題的關鍵.15、11.1【解析】根據(jù)題意證出△DEF∽△DCA,進而利用相似三角形的性質得出AC的長,即可得出答案.【詳解】由題意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,則,即,解得:AC=10,故AB=AC+BC=10+1.1=11.1(米),即旗桿的高度為11.1米.故答案為11.1.【點睛】本題考查了相似三角形的應用;由三角形相似得出對應邊成比例是解題的關鍵.16、0.9【分析】根據(jù)頻率=頻數(shù)÷數(shù)據(jù)總數(shù)計算即可得答案.【詳解】∵共射擊300次,其中有270次擊中靶子,∴射中靶子的頻率為=0.9,∴小明射擊一次擊中靶子的概率約為0.9,故答案為:0.9【點睛】本題考查利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.17、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與隨機抽取兩個數(shù)相乘,積是偶數(shù)的情況,再利用概率公式求解即可求得答案.【詳解】解:畫樹狀圖得:∵共有6種等可能的結果,隨機抽取兩個數(shù)相乘,積是偶數(shù)的有4種情況,∴隨機抽取兩個數(shù)相乘,積是偶數(shù)的概率是;故答案為:.【點睛】此題考查了用列表法或樹狀圖法求概率.列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.18、【分析】首先設AB=CD=AD=BC=a,再根據(jù)拋物線解析式可得E點坐標,表示出C點橫坐標和縱坐標,進而可得方程﹣5﹣a=﹣5,再解即可.【詳解】設AB=CD=AD=BC=a,∵拋物線y=(x+1)2﹣5,∴頂點E(﹣1,﹣5),對稱軸為直線x=﹣1,∴C的橫坐標為﹣1,D的橫坐標為﹣1﹣,∵點C在拋物線y=(x+1)2﹣5上,∴C點縱坐標為(﹣1+1)2﹣5=﹣5,∵E點坐標為(﹣1,﹣5),∴B點縱坐標為﹣5,∵BC=a,∴﹣5﹣a=﹣5,解得:a1=,a2=0(不合題意,舍去),故答案為:.【點睛】此題主要考查二次函數(shù)與幾何綜合,解題的關鍵是熟知二次函數(shù)的圖像與性質、正方形的性質.三、解答題(共66分)19、(1)A1(﹣3,3),B1(﹣2,1);(2).【解析】試題分析:(1)根據(jù)網格結構找出點繞點逆時針旋轉90°后的對應點的位置,然后順次連接即可,再根據(jù)平面直角坐標系寫出各點的坐標;

(2)利用勾股定理列式求出的長,再利用弧長公式列式計算即可得解;試題解析:(1)如圖,(2)由可得:20、(1)13;(2)不公平,規(guī)則見解析【解析】(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果,再得出得點(x,y)在函數(shù)y=-x+5的圖象上的情況,利用概率公式即可求得答案;

(2)首先分別求得x、y滿足xy>6則小明勝,x、y滿足xy<6則小紅勝的概率,比較概率大小,即可得這個游戲是否公平;公平的游戲規(guī)則:只要概率相等即可.【詳解】(1)畫樹狀圖得:∵共有12種等可能的結果,其中在函數(shù)y=?x+5的圖象上的有4種:(1,4),(2,3),(3,2),(4,1),∴點(x,y)在函數(shù)y=?x+5的圖象上的概率為:412(3)這個游戲不公平.理由:∵x、y滿足xy>6有:(2,4),(3,4),(4,2),(4,3)共4種情況,x、y滿足xy<6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6種情況.∴P(小明勝)=412=13,P(∴這個游戲不公平。公平的游戲規(guī)則為:若x、y滿足xy≥6則小明勝,若x、y滿足xy<6則小紅勝.【點睛】考查游戲公平性,一次函數(shù)圖象上點的坐標特征,列表法與樹狀圖法,掌握概率=所求情況數(shù)與總情況數(shù)之比是解題的關鍵.21、(1)1.2米(2)0.72米【解析】(1)過點C作CG⊥AB于G,得到四邊形CFEG是矩形,根據(jù)矩形的性質得到EG=CF=0.44,故BG=0.24設AG=x,求得AB=x+0.24,AC=AB=x+0.24,根據(jù)余弦的定義列方程即可求出x,即可求出AB的長;(2)利用正弦即可求出CG的長.【詳解】(1)過點C作CG⊥AB于G,則四邊形CFEG是矩形,∴EG=CF=0.44,故BG=0.24設AG=x,∴AB=x+0.24,AC=AB=x+0.24,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG==0.8,解得:x=0.96,經檢驗,x=0.96符合題意,∴AB=x+0.24=1.2(米),(2)點到立柱的距離為CG,故CG=ACsin37°=1.2×0.6=0.72(米)【點睛】此題主要考查了解直角三角形的應用,熟練應用銳角三角函數(shù)關系是解題關鍵.22、(1)證明見解析;(2)CD=1.【分析】(1)利用BA平分∠EBD得到∠ABE=∠ABD,再根據(jù)圓周角定理得到∠ABE=∠ADC,∠ABD=∠ACD,利用等量代換得到∠ACD=∠ADC,從而得到結論;(2)根據(jù)等腰三角形的性質得到∠E=∠ABE,則可證明△ABE∽△ACD,然后根據(jù)相似比求出CD的長.【詳解】(1)證明:∵BA平分∠EBD,∴∠ABE=∠ABD,∵∠ABE=∠ADC,∠ABD=∠ACD,∴∠ACD=∠ADC,∴AC=AD;(2)解:∵AE=AB,∴∠E=∠ABE,∴∠E=∠ABE=∠ACD=∠ADC,∴△ABE∽△ACD,∴==,∴CD=AD=×6=1.【點睛】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形,靈活運用相似三角形的性質表示線段之間的關系;也考查了圓周角定理.23、(1);(2)3;(3).【分析】(1)利用待定系數(shù)法進行求解即可;(2)作直線DE⊥軸于點E,交BC于點G,作CF⊥DE,垂足為F,先求出S△OAC=6,再根據(jù)S△BCD=S△AOC,得到S△BCD=,然后求出BC的解析式為,則可得點G的坐標為,由此可得,再根據(jù)S△BCD=S△CDG+S△BDG=,可得關于m的方程,解方程即可求得答案;(3)存在,如下圖所示,以BD為邊或者以BD為對角線進行平行四邊形的構圖,以BD為邊時,有3種情況,由點D的坐標可得點N點縱坐標為±,然后分點N的縱坐標為和點N的縱坐標為兩種情況分別求解;以BD為對角線時,有1種情況,此時N1點與N2點重合,根據(jù)平行四邊形的對邊平行且相等可求得BM1=N1D=4,繼而求得OM1=8,由此即可求得答案.【詳解】(1)拋物線經過點A(-2,0),B(4,0),∴,解得,∴拋物線的函數(shù)表達式為;(2)作直線DE⊥軸于點E,交BC于點G,作CF⊥DE,垂足為F,∵點A的坐標為(-2,0),∴OA=2,由,得,∴點C的坐標為(0,6),∴OC=6,∴S△OAC=,∵S△BCD=S△AOC,∴S△BCD=,設直線BC的函數(shù)表達式為,由B,C兩點的坐標得,解得,∴直線BC的函數(shù)表達式為,∴點G的坐標為,∴,∵點B的坐標為(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=,∴S△BCD=,∴,解得(舍),,∴的值為3;(3)存在,如下圖所示,以BD為邊或者以BD為對角線進行平行四邊形的構圖,以BD為邊時,有3種情況,∵D點坐標為,∴點N點縱坐標為±,當點N的縱坐標為時,如點N2,此時,解得:(舍),∴,∴;當點N的縱坐標為時,如點N3,N4,此時,解得:∴,,∴,;以BD為對角線時,有1種情況,此時N1點與N2點重合,∵,D(3,),∴N1D=4,∴BM1=N1D=4,∴OM1=OB+BM1=8,∴M1(8,0),綜上,點M的坐標為:.【點睛】本題考查的是二次函數(shù)的綜合題,涉及了待定系數(shù)法、三角形的面積、解一元二次方程、平行四邊形的性質等知識,運用了數(shù)形結合思想、分類討論思想等數(shù)學思想,熟練掌握和靈活運用相關知識是解題的關鍵.24、(1)這兩年我市推行綠色建筑面積的年平均增長率為40%;(2)如果2019年仍保持相同的年平均增長率,2019年我市能完成計劃目標.【分析】(1)設這兩年我市推行綠色建筑面積的年平均增長率x,根據(jù)2016年的綠色建筑面積約為950萬平方米和2018年達到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論