版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.下列說法正確的是()A.一組對邊相等且有一個角是直角的四邊形是矩形B.對角線互相垂直的四邊形是菱形C.對角線相等且互相垂直的四邊形是正方形D.對角線平分一組對角的平行四邊形是菱形2.把函數(shù)y=﹣3x2的圖象向右平移2個單位,所得到的新函數(shù)的表達式是()A.y=﹣3x2﹣2 B.y=﹣3(x﹣2)2 C.y=﹣3x2+2 D.y=﹣3(x+2)23.如果小強將飛鏢隨意投中如圖所示的正方形木板,那么P(飛鏢落在陰影部分的概率)為()A. B. C. D.4.下面的函數(shù)是反比例函數(shù)的是()A. B. C. D.5.二次函數(shù)的部分圖象如圖所示,有以下結(jié)論:①;②;③;④,其中錯誤結(jié)論的個數(shù)是()A.1 B.2 C.3 D.46.已知函數(shù)y=ax2+bx+c的圖象如圖所示,則關(guān)于x的方程ax2+bx+c﹣4=0的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個異號的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根7.已知正多邊形的邊心距與邊長的比為,則此正多邊形為()A.正三角形 B.正方形 C.正六邊形 D.正十二邊形8.如圖,在同一平面直角坐標系中,反比例函數(shù)與一次函數(shù)y=kx?1(k為常數(shù),且k≠0)的圖象可能是()A. B. C. D.9.如圖,CD是⊙O的直徑,已知∠1=30°,則∠2等于()A.30° B.45° C.60° D.70°10.已知拋物線與軸沒有交點,那么該拋物線的頂點所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.對于反比例函數(shù),下列說法錯誤的是()A.它的圖像在第一、三象限B.它的函數(shù)值隨的增大而減小C.點為圖像上的任意一點,過點作軸于點.的面積是.D.若點和點在這個函數(shù)圖像上,則12.如圖,AB是⊙O的直徑,弦CD交AB于點E,且E是CD的中點,∠CDB=30°,CD=6,則陰影部分面積為()A.π B.3π C.6π D.12π二、填空題(每題4分,共24分)13.在平面坐標系中,正方形的位置如圖所示,點的坐標為,點的坐標為,延長交軸于點,作正方形,正方形的面積為______,延長交軸于點,作正方形,……按這樣的規(guī)律進行下去,正方形的面積為______.14.如圖,二次函數(shù)y=x(x﹣3)(0≤x≤3)的圖象,記為C1,它與x軸交于點O,A1;將C1點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;……若P(2020,m)在這個圖象連續(xù)旋轉(zhuǎn)后的所得圖象上,則m=_____.15.如圖,⊙O與直線相離,圓心到直線的距離,,將直線繞點逆時針旋轉(zhuǎn)后得到的直線剛好與⊙O相切于點,則⊙O的半徑=.16.如圖,在⊙O中,∠AOB=60°,則∠ACB=____度.17.拋物線的頂點坐標是__________.18.如圖,在山坡上種樹時,要求株距(相鄰兩樹間的水平距離)為6m.測得斜坡的斜面坡度為i=1:(斜面坡度指坡面的鉛直高度與水平寬度的比),則斜坡相鄰兩樹間的坡面距離為_____.三、解答題(共78分)19.(8分)已知反比例函數(shù)的圖象過點P(-1,3),求m的值和該反比例函數(shù)的表達式.20.(8分)(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立?說明理由.(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,在△ABD中,AB=12,AD=BD=10.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設(shè)點P的運動時間為t(秒),當以D為圓心,以DC為半徑的圓與AB相切,求t的值.21.(8分)如圖,一般捕魚船在A處發(fā)出求救信號,位于A處正西方向的B處有一艘救援艇決定前去數(shù)援,但兩船之間有大片暗礁,無法直線到達.救援艇決定馬上調(diào)整方向,先向北偏東方以每小時30海里的速度航行,同時捕魚船向正北低速航行.30分鐘后,捕魚船到達距離A處海里的D處,此時救援艇在C處測得D處在南偏東的方向上.求C、D兩點的距離;捕魚船繼續(xù)低速向北航行,救援艇決定再次調(diào)整航向,沿CE方向前去救援,并且捕魚船和救援艇同達時到E處,若兩船航速不變,求的正弦值.參考數(shù)據(jù):,,22.(10分)如圖,在矩形ABCD中,CE⊥BD,AB=4,BC=3,P為BD上一個動點,以P為圓心,PB長半徑作⊙P,⊙P交CE、BD、BC交于F、G、H(任意兩點不重合),(1)半徑BP的長度范圍為;(2)連接BF并延長交CD于K,若tanKFC3,求BP;(3)連接GH,將劣弧HG沿著HG翻折交BD于點M,試探究是否為定值,若是求出該值,若不是,請說明理由.23.(10分)圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.(1)如圖1,連接DE,BG,M為線段BG的中點,連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;(2)在圖1的基礎(chǔ)上,將正方形AEFG繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點,連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.24.(10分)如圖,反比例函數(shù)y=(x>0)和一次函數(shù)y=mx+n的圖象過格點(網(wǎng)格線的交點)B、P.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)觀察圖象,直接寫出一次函數(shù)值大于反比例函數(shù)值時x的取值范圍是:.(3)在圖中用直尺和2B鉛筆畫出兩個矩形(不寫畫法),要求每個矩形均需滿足下列兩個條件:①四個頂點均在格點上,且其中兩個頂點分別是點O,點P;②矩形的面積等于k的值.25.(12分)有2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.(1)求甲選擇A部電影的概率;(2)求甲、乙、丙3人選擇同一部電影的概率(請用畫樹狀圖的方法給出分析過程,并求出結(jié)果)26.如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點.(1)求一次函數(shù)的表達式;(2)若將直線向下平移個單位長度后與反比例函數(shù)的圖像有且只有一個公共點,求的值.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)矩形、正方形、菱形的判定方法一一判斷即可;【詳解】A、一組對邊相等且有一個角是直角的四邊形不一定是矩形,故本選項不符合題意;B、對角線互相垂直的四邊形不一定是菱形,故本選項不符合題意;C、對角線相等且互相垂直的四邊形不一定是正方形,故本選項不符合題意;D、對角線平分一組對角的平行四邊形是菱形,正確.故選:D.【點睛】本題考查矩形、正方形、菱形的判定方法,屬于中考常考題型.2、B【分析】根據(jù)二次函數(shù)圖象左加右減,上加下減的平移規(guī)律進行解答.【詳解】二次函數(shù)y=﹣3x1的圖象向右平移1個單位,得:y=﹣3(x﹣1)1.故選:B.【點睛】本題考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.3、C【解析】先求大正方形和陰影部分的面積分別為36和4,再用面積比求概率.【詳解】設(shè)小正方形的邊長為1,則正方形的面積為6×6=36,陰影部分面積為,所以,P落在三角形內(nèi)的概率是.故選C.【點睛】本題考核知識點:幾何概率.解答本題的關(guān)鍵是理解幾何概率的概念,即:概率=相應(yīng)的面積與總面積之比.分別求出相關(guān)圖形面積,再求比.4、A【解析】一般地,如果兩個變量x、y之間的關(guān)系可以表示成y=或y=kx-1(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù),據(jù)此進行求解即可.【詳解】解:A、是反比例函數(shù),正確;
B、是二次函數(shù),錯誤;
C、是正比例函數(shù),錯誤;
D、是一次函數(shù),錯誤.
故選:A.【點睛】本題考查了反比例函數(shù)的識別,容易出現(xiàn)的錯誤是把當成反比例函數(shù),要注意對反比例函數(shù)形式的認識.5、A【分析】①對稱軸為,得;②函數(shù)圖象與x軸有兩個不同的交點,得;③當時,,當時,,得;④由對稱性可知時對應(yīng)的y值與時對應(yīng)的y值相等,當時【詳解】解:由圖象可知,對稱軸為,,,①正確;∵函數(shù)圖象與x軸有兩個不同的交點,,②正確;當時,,當時,,③正確;由對稱性可知時對應(yīng)的y值與時對應(yīng)的y值相等,∴當時,④錯誤;故選A.【點睛】考查二次函數(shù)的圖象及性質(zhì);熟練掌握從函數(shù)圖象獲取信息,將信息與函數(shù)解析式相結(jié)合解題是關(guān)鍵.6、A【分析】根據(jù)拋物線的頂點坐標的縱坐標為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數(shù)y=ax2+bx+c的圖象與直線y=4交點的情況.【詳解】∵函數(shù)的頂點的縱坐標為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數(shù)根,故選A.【點睛】本題考查了二次函數(shù)與一元二次方程,熟練掌握一元二次方程與二次函數(shù)間的關(guān)系是解題的關(guān)鍵.7、B【分析】邊心距與邊長的比為,即邊心距等于邊長的一半,進而可知半徑與邊心距的夾角是15度.可求出中心角的度數(shù),從而得到正多邊形的邊數(shù).【詳解】如圖,圓A是正多邊形的內(nèi)切圓;∠ACD=∠ABD=90°,AC=AB,CD=BD是邊長的一半,當正多邊形的邊心距與邊長的比為,即如圖有AB=BD,則△ABD是等腰直角三角形,∠BAD=15°,∠CAB=90°,即正多邊形的中心角是90度,所以它的邊數(shù)=360÷90=1.故選:B.【點睛】本題利用了正多邊形與它的內(nèi)切圓的關(guān)系求解,轉(zhuǎn)化為解直角三角形的計算.8、B【分析】分k>0和k<0兩種情況,分別判斷反比例函數(shù)的圖象所在象限及一次函數(shù)y=-kx-1的圖象經(jīng)過的象限.再對照四個選項即可得出結(jié)論.【詳解】當k>0時,-k<0,
∴反比例函數(shù)的圖象在第一、三象限,一次函數(shù)y=kx-1的圖象經(jīng)過第一、三、四象限;
當k<0時,-k>0,
∴反比例函數(shù)的圖象在第二、四象限,一次函數(shù)y=kx-1的圖象經(jīng)過第二、三、四象限.
故選:B.【點睛】本題考查了反比例函數(shù)的圖象與性質(zhì)以及一次函數(shù)圖象與性質(zhì),熟練掌握兩種函數(shù)的性質(zhì)并分情況討論是解題的關(guān)鍵.9、C【解析】試題分析:如圖,連接AD.∵CD是⊙O的直徑,∴∠CAD=90°(直徑所對的圓周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所對的圓周角相等),∴∠2=60°考點:圓周角定理10、D【分析】根據(jù)題目信息可知當y=0時,,此時,可以求出a的取值范圍,從而可以確定拋物線頂點坐標的符號,繼而可以確定頂點所在的象限.【詳解】解:∵拋物線與軸沒有交點,∴時無實數(shù)根;即,,解得,,又∵的頂點的橫坐標為:;縱坐標為:;故拋物線的頂點在第四象限.故答案為:D.【點睛】本題考查的知識點是拋物線與坐標軸的交點問題,解題的關(guān)鍵是根據(jù)拋物線與x軸無交點得出時無實數(shù)根,再利用根的判別式求解a的取值范圍.11、B【分析】對反比例函數(shù)化簡得,所以k=>0,當k>0時,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減小,根據(jù)反比例函數(shù)的性質(zhì)對四個選項進行逐一分析即可.【詳解】解:A、∵k=>0,∴它的圖象分布在第一、三象限,故本選項正確;B、∵它的圖象分布在第一、三象限,∴在每一象限內(nèi)y隨x的增大而減小,故本選項錯誤;C、∵k=,根據(jù)反比例函數(shù)中k的幾何意義可得的面積為=,故本選項正確;D、∵它的圖象分布在第一、三象限,在每一象限內(nèi)y隨x的增大而減小,∵x1=﹣1<0,x2=﹣<0,且x1>x2,∴,故本選項正確.故選:B.【點睛】題考查的是反比例函數(shù)的性質(zhì),熟知反比例函數(shù)y=(k≠0)中,當k>0時函數(shù)圖象的兩個分支分別位于一三象限是解答此題的關(guān)鍵.12、D【解析】根據(jù)題意得出△COB是等邊三角形,進而得出CD⊥AB,再利用垂徑定理以及銳角三角函數(shù)關(guān)系得出CO的長,進而結(jié)合扇形面積求出答案.【詳解】解:連接BC,∵∠CDB=30°,∴∠COB=60°,∴∠AOC=120°,又∵CO=BO,∴△COB是等邊三角形,∵E為OB的中點,∴CD⊥AB,∵CD=6,∴EC=3,∴sin60°×CO=3,解得:CO=6,故陰影部分的面積為:=12π.故選:D.【點睛】此題主要考查了垂徑定理以及銳角三角函數(shù)和扇形面積求法等知識,正確得出CO的長是解題關(guān)鍵.二、填空題(每題4分,共24分)13、11.25【分析】推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,證△DOA∽△ABA1,再求出AB,BA1,面積即可求出;求出第2個正方形的邊長;再求出第3個正方形邊長;依此類推得出第2019個正方形的邊長,求出面積即可.【詳解】∵四邊形ABCD是正方形,
∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,
∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,
∴∠ADO=∠BAA1,
∵∠DOA=∠ABA1,
∴△DOA∽△ABA1,
∴,
∵AB=AD=,
∴BA1=,
∴第2個正方形A1B1C1C的邊長A1C=A1B+BC=,第2個正方形A1B1C1C的面積()2=11.25
同理第3個正方形的邊長是=()2,
第4個正方形的邊長是()3,,
第2019個正方形的邊長是()2018,面積是[()2018]2=5×()2018×2=故答案為:(1)11.25;(2)【點睛】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),依次求出正方形的邊長是解題的關(guān)鍵.14、1.【分析】x(x﹣3)=0得A1(3,0),再根據(jù)旋轉(zhuǎn)的性質(zhì)得OA1=A1A1=A1A3=…=A673A674=3,所以拋物線C764的解析式為y=﹣(x﹣1019)(x﹣1011),然后計算自變量為1010對應(yīng)的函數(shù)值即可.【詳解】當y=0時,x(x﹣3)=0,解得x1=0,x1=3,則A1(3,0),∵將C1點A1旋轉(zhuǎn)180°得C1,交x軸于點A1;將C1繞點A1旋轉(zhuǎn)180°得C3,交x軸于點A3;……∴OA1=A1A1=A1A3=…=A673A674=3,∴拋物線C764的解析式為y=﹣(x﹣1019)(x﹣1011),把P(1010,m)代入得m=﹣(1010﹣1019)(1010﹣1011)=1.故答案為1.【點睛】本題考查圖形類規(guī)律,解題的關(guān)鍵是掌握圖形類規(guī)律的基本解題方法.15、1.【解析】試題分析:∵OB⊥AB,OB=,OA=4,∴在直角△ABO中,sin∠OAB=,則∠OAB=60°;又∵∠CAB=30°,∴∠OAC=∠OAB-∠CAB=30°,∵直線剛好與⊙O相切于點C,∴∠ACO=90°,∴在直角△AOC中,OC=OA=1.故答案是1.考點:①解直角三角形;②切線的性質(zhì);③含30°角直角三角形的性質(zhì).16、1.【詳解】解:同弧所對圓心角是圓周角的2倍,所以∠ACB=∠AOB=1°.∵∠AOB=60°∴∠ACB=1°故答案為:1.【點睛】本題考查圓周角定理.17、(-1,-3)【分析】根據(jù)拋物線頂點式得頂點為可得答案.【詳解】解:∵拋物線頂點式得頂點為,∴拋物線的頂點坐標是(-1,-3)故答案為(-1,-3).【點睛】本題考查了二次函數(shù)的頂點式的頂點坐標,熟記二次函數(shù)的頂點式及坐標是解題的關(guān)鍵.18、4米.【分析】首先根據(jù)斜面坡度為i=1:求出株距(相鄰兩樹間的水平距離)為6m時的鉛直高度,再利用勾股定理計算出斜坡相鄰兩樹間的坡面距離.【詳解】由題意水平距離為6米,鉛垂高度2米,∴斜坡上相鄰兩樹間的坡面距離=(m),故答案為:4米.【點睛】此題考查解直角三角形的應(yīng)用,解題關(guān)鍵是掌握計算法則.三、解答題(共78分)19、2;.【分析】把點P的坐標代入函數(shù)解析式求得m的值即可【詳解】解:把點P(-1,3)代入,得.解得.把m=2代入,得,即.∴反比例函數(shù)的表達式為.【點睛】本題考查了待定系數(shù)法確定函數(shù)關(guān)系式,反比例函數(shù)圖象上點的坐標特征.難度不大,熟悉函數(shù)圖象的性質(zhì)即可解題.20、(1)見解析;(2)結(jié)論AD·BC=AP·BP仍成立.理由見解析;(3)t的值為2秒或10秒.【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證得△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;
(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證得△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;
(3)過點D作DE⊥AB于點E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=6,根據(jù)勾股定理可得DE=8,由題意可得DC=DE=8,則有BC=10?8=2,易證∠DPC=∠A=∠B,根據(jù)AD·BC=AP·BP,即可求出t的值.【詳解】(1)證明:∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴,∴AD·BC=AP·BP;(2)結(jié)論AD·BC=AP·BP仍成立理由:∵∠BPD=∠DPC+∠BPC,且∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP,∵∠DPC=∠A=θ,∴∠BPC=∠ADP,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴AD·BC=AP·BP;(3)如圖3,過點D作DE⊥AB于點E,∵AD=BD=10,AB=12,.∴AE=BE=6,∴,∵以D為圓心,以DC為半徑的圓與AB相切,∴DC=DE=8,∴BC=10-8=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(1)(2)的經(jīng)驗得AD·BC=AP·BP,又∵AP=t,BP=12-t,∴,解得:,,∴t的值為2秒或10秒.【點睛】本題是對K型相似模型的探究和應(yīng)用,考查了相似三角形的判定與性質(zhì)、切線的性質(zhì)、等腰三角形的性質(zhì)、勾股定理、等角的余角相等、三角形外角的性質(zhì)、解一元二次方程等知識以及運用已有經(jīng)驗解決問題的能力,滲透了特殊到一般的思想.21、(1)CD兩點的距離是10海里;(2)0.08【分析】過點C、D分別作,,垂足分別為G,F(xiàn),根據(jù)直角三角形的性質(zhì)得出CG,再根據(jù)三角函數(shù)的定義即可得出CD的長;如圖,設(shè)漁政船調(diào)整方向后t小時能與捕漁船相會合,由題意知,,,過點E作于點H,根據(jù)三角函數(shù)表示出EH,在中,根據(jù)正弦的定義求值即可;【詳解】解:過點C、D分別作,,垂足分別為G,F(xiàn),在中,,海里,,四邊形ADFG是矩形,海里,海里,在中,,,,海里.答:CD兩點的距離是10海里;如圖,設(shè)漁船調(diào)整方向后t小時能與捕漁船相會合,由題意知,,,過點E作于點H,則,,,在中,.答:的正弦值是.【點睛】本題主要考查了解直角三角形的應(yīng)用方向角問題,掌握解直角三角形的應(yīng)用方向角問題是解題的關(guān)鍵.22、(1);(2)BP=1;(3)【分析】(1)當點G和點E重合,當點G和點D重合兩種臨界狀態(tài),分別求出BP的值,因為任意點都不重合,所以BP在兩者之間即可得出答案;(2)∠KFC和∠BFE是對頂角,得到,得出EF的值,再根據(jù)△BEF∽△FEG,求出EG的值,進而可求出BP的值;(3)設(shè)圓的半徑,利用三角函數(shù)表示出PO,GO的值,看用面積法求出,在中由勾股定理得出MQ的值,進而可求出PM的值即可得出答案.【詳解】(1)當G點與E點重合時,BG=BE,如圖所示:∵四邊形ABCD是矩形,AB=4,BC=3,∴BD=5,∵CE⊥BD,∴,∴,在△BEC中,由勾股定理得:,∴,當點G和點D重合時,如圖所示:∵△BCD是直角三角形,∴BP=DP=CP,∴,∵任意兩點都不重合,∴,(2)連接FG,如圖所示:∵∠KFC=∠BFE,tanKFC3,∴,∴,∴,∵BG是圓的直徑,∴∠BFG=90°,∴∠GFE+∠BFE=90°,∵CE⊥BD,∴∠FEG=∠FEB=90°,∴∠GFE+∠FGE=90°,∴∠BFE=∠FGE∴△BEF∽△FEG,∴,∴,∴,∴BG=EG+BE=2,∴BP=1,(3)為定值,過作,連接,,交GH于點O,如下圖所示:設(shè),則,,∴,∴,∴,∴,∴,∴【點睛】本題考查了動圓問題,矩形的性質(zhì),面積法的運用,三角函數(shù),相似三角形的判定和性質(zhì)等知識點,屬于圓和矩形的綜合題,難度中等偏上,利用數(shù)形結(jié)合思想和扎實的基礎(chǔ)是解決本題的關(guān)鍵.23、(1)AM=DE,AM⊥DE,理由詳見解析;(2)AM=DE,AM⊥DE,理由詳見解析.【解析】試題分析:(1)AM=DE,AM⊥DE,理由是:先證明△DAE≌△BAG,得DE=BG,∠AED=∠AGB,再根據(jù)直角三角形斜邊的中線的性質(zhì)得AM=BG,AM=BM,則AM=DE,由角的關(guān)系得∠MAB+∠AED=90°,所以∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:作輔助線構(gòu)建全等三角形,證明△MNG≌△MAB和△AGN≌△EAD可以得出結(jié)論.試題解析:(1)AM=DE,AM⊥DE,理由是:如圖1,設(shè)AM交DE于點O,∵四邊形ABCD和四邊形AEFG都是正方形,∴AG=AE,AD=AB,∵∠DAE=∠BAG,∴△DAE≌△BAG,∴DE=BG,∠AED=∠AGB,在Rt△ABG中,∵M為線段BG的中點,∴AM=BG,AM=BM,∴AM=DE,∵AM=BM,∴∠MBA=∠MAB,∵∠AGB+∠MBA=90°,∴∠MAB+∠AED=90°,∴∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:如圖2,延長AM到N,使MN=AM,連接NG,∵MN=AM,MG=BM,∠NMG=∠BMA,∴△MNG≌△MAB,∴NG=AB,∠N=∠BAN,由(1)得:AB=AD,∴NG=AD,∵∠BAN+∠DAN=90°,∴∠N+∠DAN=90°,∴NG⊥AD,∴∠AGN+∠DAG=90°,∵∠DAG+∠DAE=∠EAG=90°,∴∠AGN=∠DAE,∵NG=AD,AG=AE,∴△AGN≌△EAD,∴AN=DE,∠N=∠ADE,∵∠N+∠DAN=90°,∴∠ADE+∠DAN=90°,∴AM⊥DE.考點:旋轉(zhuǎn)的性質(zhì);正方形的性質(zhì).24、(1)y=,y=﹣+3;(2)2<x<1;(3)見解析【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 洗瓶器課程設(shè)計動圖
- 2025年度砂石存放地租賃合同:高標準倉儲服務(wù)協(xié)議3篇
- 二零二五年度房產(chǎn)買賣居間代理合同模板6篇
- 基坑爆破作業(yè)安全技術(shù)規(guī)程模版(2篇)
- 二零二五年度吊裝設(shè)備租賃及工程進度管理合同2篇
- 液壓缸的設(shè)計課程設(shè)計
- 二零二五年度冷鏈物流搬運配送承包協(xié)議2篇
- 資助中心資助實施方案范文(2篇)
- 2025年文明校園演講稿范例(2篇)
- 二零二五年度按摩技師團隊協(xié)作聘用合同3篇
- -油水井小修工藝技術(shù)課件
- 中國文化概論(第三版)全套課件
- (完整版)兒童醫(yī)學康復(fù)科疾病護理常規(guī)
- 2022閥門制造作業(yè)指導(dǎo)書
- 科技創(chuàng)新社團活動教案課程
- 建筑結(jié)構(gòu)加固工程施工質(zhì)量驗收規(guī)范表格
- 部編版語文六年級上冊作文總復(fù)習課件
- 無水氯化鈣MSDS資料
- 專利產(chǎn)品“修理”與“再造”的區(qū)分
- 氨堿法純堿生產(chǎn)工藝概述
- 健康管理專業(yè)建設(shè)規(guī)劃
評論
0/150
提交評論