復(fù)旦大學(xué) 趙一鳴 離散數(shù)學(xué) 三_第1頁
復(fù)旦大學(xué) 趙一鳴 離散數(shù)學(xué) 三_第2頁
復(fù)旦大學(xué) 趙一鳴 離散數(shù)學(xué) 三_第3頁
復(fù)旦大學(xué) 趙一鳴 離散數(shù)學(xué) 三_第4頁
復(fù)旦大學(xué) 趙一鳴 離散數(shù)學(xué) 三_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1.InverserelationDefinition2.13:LetRbearelationfromAtoB.TheinverserelationofRisarelationfromBtoA,wewriteR-1,definedbyR-1={(b,a)|(a,b)R}2.4OperationsonRelations

1Theorem2.1:LetR,R1,andR2berelationfromAtoB.Then(1)(R-1)-1=R;(2)(R1∪R2)-1=R1-1∪R2-1;(3)(R1∩R2)-1=R1-1∩R2-1;(4)(A×B)-1=B×A;(5)-1=;(7)(R1-R2)-1=R1-1-R2-1(8)IfR1R2thenR1-1R2-12Theorem2.2:LetRbearelationonA.ThenRissymmetricifonlyifR=R-1.Proof:(1)IfRissymmetric,thenR=R-1。RR-1andR-1R。(2)IfR=R-1,thenRissymmetricForany(a,b)R,(b,a)?R

32.CompositionDefinition2.14:LetR1bearelationfromAtoB,andR2bearelationfromBtoC.ThecompositionofR1andR2,wewriteR2R1,isarelationfromAtoC,andisdefinedR2R1={(a,c)|thereexistsomebBsothat(a,b)R1and(b,c)R2,whereaAandcC}.(1)R1isarelationfromAtoB,andR2isarelationfromBtoC(2)commutativelaw?

R1={(a1,b1),(a2,b3),(a1,b2)}R2={(b4,a1),(b4,c1),(b2,a2),(b3,c2)}

4Associativelaw?ForR1

A×B,R2B×C,andR3C×DR3(R2R1)=?(R3R2)R1subsetofA×DForany(a,d)R3(R2R1),(a,d)?(R3R2)R1,Similarity,(R3R2)R1R3(R2R1)Theorem2.3:LetR1bearelationfromAtoB,R2bearelationfromBtoC,R3bearelationfromCtoD.ThenR3(R2R1)=(R3R2)R1(Associativelaw)5Definition2.15:Let

RbearelationonA,andnN.TherelationRnisdefinedasfollows.(1)R0={(a,a)|aA}),wewriteIA.(2)Rn+1=RRn.Theorem2.4:Let

RbearelationonA,andm,nN.Then(1)RmRn=Rm+n(2)(Rm)n=Rmn6A={a1,a2,,an},B={b1,b2,,bm}R1andR2berelationsfromAtoB.MR1=(xij),MR2=(yij)MR1∪R2=(xijyij)MR1∩R2=(xijyij)01010

010

001

111

01Example:A={2,3,4},B={1,3,5,7}R1={(2,3),(2,5),(2,7),(3,5),(3,7),(4,5),(4,7)}R2={(2,5),(3,3),(4,1),(4,7)}InverserelationR-1ofR:MR-1=MRT,MRTisthetransposeofMR.7A={a1,a2,,an},B={b1,b2,,bm},C={c1,c2,,cr},R1bearelationsfromAtoB,MR1=(xij)mn,R2bearelationfromBtoC,MR2=(yij)nr.ThecompositionR2R1ofR1andR2,8Example:R={(a,b),(b,a),(a,c)},isnotsymmetric+(c,a),R'={(a,b),(b,a),(a,c),(c,a)},R'

issymmetric.Closure92.5ClosuresofRelations1.IntroductionConstruct

anewrelationR‘,

s.t.RR’,

particularproperty,smallestrelationclosureDefinition2.17:LetRbearelationonasetA.R'iscalledthereflexive(symmetric,transitive)closureofR,wewriter(R)(s(R),t(R)orR+),ifthereisarelationR'withreflexivity(symmetry,transitivity)containingRsuchthatR'isasubsetofeveryrelationwithreflexivity(symmetry,transitivity)containingR.10Condition:1)R'isreflexivity(symmetry,transitivity)2)RR'3)Foranyreflexive(symmetric,transitive)relationR",IfRR",thenR'R"Example:IfRissymmetric,s(R)=?IfRissymmetric,thens(R)=RContrariwise,Ifs(R)=R,thenRissymmetricRissymmetricifonlyifs(R)=RTheorem2.5:LetRbearelationonasetA.Then(1)Risreflexiveifonlyifr(R)=R(2)Rissymmetricifonlyifs(R)=R(3)Ristransitiveifonlyift(R)=R11Theorem2.6:LetR1andR2berelationsonA,andR1R2.Then(1)r(R1)r(R2);(2)s(R1)s(R2);(3)t(R1)t(R2)。Proof:(3)R1R2t(R1)t(R2)BecauseR1R2,R1t(R2)t(R2):transitivity12Example:LetA={1,2,3},R={(1,2),(1,3)}.Then2.ComputingclosuresTheorem2.7:LetRbearelationonasetA,andIAbeidentity(diagonal)relation.Thenr(R)=R∪IA(IA={(a,a)|aA})Proof:LetR'=R∪IA.Definitionofclosure(1)ForanyaA,(a,a)?R'.(2)R?R'.(3)SupposethatR''isreflexiveandRR'',R'?R''13Theorem2.8:LetRbearelationonasetA.Thens(R)=R∪R-1.Proof:LetR'=R∪R-1Definitionofclosure(1)R',symmetric?(2)R?R'.(3)SupposethatR''issymmetricandRR'',R'?R'')14Example:symmetricclosureof“<”onthesetofintegers,is“≠”<,>,LetAisnoemptyset.ThereflexiveclosureofemptyrelationonAistheidentityrelationonAThesymmetricclosureofemptyrelationonA,isanemptyrelation.15Theorem2.9:LetRbearelationonA.Then

Theorem2.10:LetAbeasetwith|A|=n,andletRbearelation

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論