版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若全集,且,則()A.或 B.或C. D.或.2.下列函數(shù)中定義域為,且在上單調(diào)遞增的是A. B.C. D.3.已知,,,則下列判斷正確是()A. B.C. D.4.設(shè),則a,b,c的大小關(guān)系是()A. B.C. D.5.設(shè)函數(shù),則的值為()A. B.C. D.186.在平行四邊形中,,,為邊的中點(diǎn),,則()A.1 B.2C.3 D.47.已知點(diǎn)是第三象限的點(diǎn),則的終邊位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.定義在上的奇函數(shù)滿足,若,,則()A. B.0C.1 D.29.圓x2+y2-2x+4y+3=0的圓心到直線x-y=1的距離為()A.2 B.C.1 D.10.對于定義域為的函數(shù),如果存在區(qū)間,同時滿足下列兩個條件:①在區(qū)間上是單調(diào)的;②當(dāng)定義域是時,的值域也是,則稱是函數(shù)的一個“黃金區(qū)間”.如果可是函數(shù)的一個“黃金區(qū)間“,則的最大值為()A. B.1C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.已知A、B均為集合的子集,且,,則集合________12.若函數(shù)在區(qū)間內(nèi)有最值,則的取值范圍為_______13.設(shè),且,則的取值范圍是________.14.若扇形的面積為,半徑為1,則扇形的圓心角為___________.15.已知函數(shù)=,若對任意的都有成立,則實數(shù)的取值范圍是______16.已知,求________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù)且是奇函數(shù)求常數(shù)k值;若,試判斷函數(shù)的單調(diào)性,并加以證明;若已知,且函數(shù)在區(qū)間上的最小值為,求實數(shù)m的值18.已知函數(shù),,將圖象向右平移個單位,得到函數(shù)的圖象.(1)求函數(shù)的解析式,并求在上的單調(diào)遞增區(qū)間;(2)若函數(shù),求的周期和最大值.19.已知函數(shù),()求函數(shù)的單調(diào)區(qū)間;()若函數(shù)在上有兩個零點(diǎn),求實數(shù)的取值范圍20.已知向量,,(1)若,求向量與的夾角;(2)若函數(shù).求當(dāng)時函數(shù)的值域21.已知函數(shù),,當(dāng)時,恒有(1)求的表達(dá)式及定義域;(2)若方程有解,求實數(shù)的取值范圍;(3)若方程的解集為,求實數(shù)的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)集合補(bǔ)集的概念及運(yùn)算,準(zhǔn)確計算,即可求解.【詳解】由題意,全集,且,根據(jù)集合補(bǔ)集的概念及運(yùn)算,可得或.故選:D.2、D【解析】先求解選項中各函數(shù)的定義域,再判定各函數(shù)的單調(diào)性,可得選項.【詳解】因為的定義域為,的定義域為,所以排除選項B,C.因為在是減函數(shù),所以排除選項A,故選D.【點(diǎn)睛】本題主要考查函數(shù)的性質(zhì),求解函數(shù)定義域時,熟記常見的類型:分式,偶次根式,對數(shù)式等,單調(diào)性一般結(jié)合初等函數(shù)的單調(diào)性進(jìn)行判定,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).3、C【解析】對數(shù)函數(shù)的單調(diào)性可比較、與的大小關(guān)系,由此可得出結(jié)論.【詳解】,即.故選:C.4、C【解析】比較a、b、c與0和1的大小即可判斷它們之間的大小.【詳解】,,,故故選:C.5、B【解析】根據(jù)分段函數(shù)的不同定義域?qū)?yīng)的函數(shù)解析式,進(jìn)行代入計算即可.【詳解】,故選:B6、D【解析】以為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,設(shè),再利用平面向量的坐標(biāo)運(yùn)算求解即可【詳解】以坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,設(shè),則,,,,故,由可得,即,化簡得,故,故,,故故選:D7、D【解析】根據(jù)三角函數(shù)在各象限的符號即可求出【詳解】因為點(diǎn)是第三象限的點(diǎn),所以,故的終邊位于第四象限故選:D8、C【解析】首先判斷出是周期為的周期函數(shù),由此求得所求表達(dá)式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點(diǎn)睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.9、D【解析】圓心為,點(diǎn)到直線的距離為.故選D.10、C【解析】根據(jù)題意得到在上單調(diào),從而得到為方程的兩個同號實數(shù)根,然后化簡,進(jìn)而結(jié)合根與系數(shù)的關(guān)系得到答案.【詳解】由題意,在和上均是增函數(shù),而函數(shù)在“黃金區(qū)間”上單調(diào),所以或,且在上單調(diào)遞增,故,即為方程的兩個同號實數(shù)根,即方程有兩個同號的實數(shù)根,因為,所以只需要或,又,所以,則當(dāng)時,有最大值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)集合的交集與補(bǔ)集運(yùn)算,即可求得集合A中的元素.再判定其他元素是否符合要求.【詳解】A、B均為集合的子集若,則若,則假設(shè),因為,則.所以,則必含有1,不合題意,所以同理可判斷綜上可知,故答案為:【點(diǎn)睛】本題考查了元素與集合的關(guān)系,集合與集合的交集與補(bǔ)集運(yùn)算,對于元素的分析方法,屬于基礎(chǔ)題.12、【解析】當(dāng)函數(shù)取得最值時有,由此求得的值,根據(jù)列不等式組,解不等式組求得的取值范圍(含有),對賦值求得的具體范圍.【詳解】由于函數(shù)取最值時,,,即,又因為在區(qū)間內(nèi)有最值.所以時,有解,所以,即,由得,當(dāng)時,,當(dāng)時,又,,所以的范圍為.【點(diǎn)睛】本小題主要考查三角函數(shù)最值的求法,考查不等式的解法,考查賦值法,屬于中檔題.13、【解析】由題意得,,又因為,則的取值范圍是14、【解析】直接根據(jù)扇形的面積公式計算可得答案【詳解】設(shè)扇形的圓心角為,因為扇形的面積為,半徑為1,所以.解得,故答案為:15、【解析】轉(zhuǎn)化為對任意的都有,再分類討論求出最值,代入解不等式即可得解.【詳解】因為=,所以等價于,等價于,所以對任意的都有成立,等價于,(1)當(dāng),即時,在上為減函數(shù),,在上為減函數(shù),,所以,解得,結(jié)合可得.(2)當(dāng),即時,在上為減函數(shù),,在上為減函數(shù),在上為增函數(shù),或,所以且,解得.(3)當(dāng),即時,,在上為減函數(shù),,在上為增函數(shù),,所以,解得,結(jié)合可知,不合題意.(4)當(dāng),即時,在上為減函數(shù),在上為增函數(shù),,在上為增函數(shù),,此時不成立.(5)當(dāng)時,在上為增函數(shù),,在上為增函數(shù),,所以,解得,結(jié)合可知,不合題意.綜上所述:.故答案為:16、【解析】由條件利用同角三角函數(shù)的基本關(guān)系求得和的值,再利用兩角和差的三角公式求得的值【詳解】∵,∴,,,∴,∴故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)在上為單調(diào)增函數(shù);(3)【解析】(1)根據(jù)奇函數(shù)的定義,恒成立,可得值,也可用奇函數(shù)的必要條件求出值,然后用奇函數(shù)定義檢驗;(2)判斷單調(diào)性,一般由單調(diào)性定義,設(shè),判斷的正負(fù)(因式分解后判別),可得結(jié)論;(3)首先由,得,這樣就有,這種函數(shù)的最值求法是用換元法,即設(shè),把函數(shù)轉(zhuǎn)化為二次函數(shù)的問題,注意在換元過程中“新元”的取值范圍試題解析:(1)函數(shù)的定義域為函數(shù)(且)是奇函數(shù),,經(jīng)檢驗可知,函數(shù)為奇函數(shù),符合題意(2)設(shè)、為上兩任意實數(shù),且,,,,即函數(shù)在上為單調(diào)增函數(shù).(3),,解得或且,()令(),則當(dāng)時,,解得,舍去當(dāng)時,,解得考點(diǎn):函數(shù)的奇偶性、單調(diào)性,函數(shù)的最值18、(1),增區(qū)間是(2)周期為,最大值為.【解析】(1)由圖象平移寫出的解析式,根據(jù)余弦函數(shù)的性質(zhì)直接確定單調(diào)增區(qū)間.(2)應(yīng)用二倍角正弦公式可得,結(jié)合正弦型函數(shù)的性質(zhì)求周期和最大值.【小問1詳解】由題設(shè),,而在上遞減,上遞增,所以的單調(diào)增區(qū)間是.【小問2詳解】由(1)有,所以,最小正周期為,最大值為,此時.綜上,周期為,最大值為.19、(1)在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】(1)本題可根據(jù)正弦函數(shù)單調(diào)性得出結(jié)果;(2)可令,通過計算得出或,然后根據(jù)在上有兩個零點(diǎn)即可得出結(jié)果.【詳解】(1)令,解得,令,解得,故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2),令,則,,故或,解得或,因為在上有兩個零點(diǎn),所以,解得,故實數(shù)的取值范圍為.20、(1)(2)【解析】(1)首先求出的坐標(biāo),再根據(jù)數(shù)量積、向量夾角的坐標(biāo)公式計算可得;(2)根據(jù)數(shù)量積的坐標(biāo)公式、二倍角公式以及輔助角公式化簡函數(shù)解析式,再根據(jù)的取值范圍,求出的范圍,最后根據(jù)正弦函數(shù)的性質(zhì)計算可得;【小問1詳解】解:因為,當(dāng)時,,又.所以,,,所以,因為,所以向量與的夾角為.【小問2詳解】解:因為,,所以,當(dāng)時,,所以,則因此函數(shù)在時的值域為21、(1),;(2);(3)【解析】(1)由已知中函數(shù),,當(dāng)時,恒有,我們可以構(gòu)造一個關(guān)于方程組,解方程組求出的值,進(jìn)而得到的表達(dá)式;(2)轉(zhuǎn)化為,解得,可求出滿足條件的實數(shù)的取值范圍.(3)根據(jù)對數(shù)的運(yùn)算性質(zhì),轉(zhuǎn)化為一個關(guān)于的分式方程組,進(jìn)而根據(jù)方程的解集為,則方程組至少一個方程無解或兩個方程的解集的交集為空集,分類討論后,即可得到答案.【詳解】(1)∵當(dāng)時,,即,即,整理得恒成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 長沙理工大學(xué)城南學(xué)院《民法(2)》2023-2024學(xué)年第一學(xué)期期末試卷
- 云南經(jīng)貿(mào)外事職業(yè)學(xué)院《和聲學(xué)(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 信息技術(shù)標(biāo)準(zhǔn)化工作小組成立
- 谷雨節(jié)氣氣象解讀模板
- 三年級上冊數(shù)學(xué)應(yīng)用題100道(含答案)
- 保險銷售培訓(xùn)課程模板
- 業(yè)務(wù)操作-房地產(chǎn)經(jīng)紀(jì)人《業(yè)務(wù)操作》真題匯編2
- 房地產(chǎn)交易制度政策-《房地產(chǎn)基本制度與政策》真題匯編2
- 領(lǐng)導(dǎo)辭職報告
- 2024-2025學(xué)年江蘇省連云港市高二上學(xué)期期末調(diào)研考試數(shù)學(xué)試卷(含答案)
- TCACM 1603-2024 手法通乳中醫(yī)技術(shù)操作規(guī)范
- 廣東省潮州市潮安區(qū)2023-2024學(xué)年五年級上學(xué)期期末考試數(shù)學(xué)試題
- 醫(yī)療科研倫理審核制度
- 市政道路及設(shè)施零星養(yǎng)護(hù)服務(wù)技術(shù)方案(技術(shù)標(biāo))
- 鉆機(jī)操作規(guī)程專項培訓(xùn)考試題及答案
- 2024助貸委托服務(wù)協(xié)議合同模板
- 工程款結(jié)算協(xié)議書-景觀綠化結(jié)算
- 成人教育培訓(xùn)方案
- 王者榮耀各英雄各項初始、滿級屬性-成長值
- 飲食春節(jié)健康宣教課件
- 光伏項目安全專項施工方案
評論
0/150
提交評論