2023年福建師范大學(xué)大附屬中學(xué)高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷(含答案解析)_第1頁(yè)
2023年福建師范大學(xué)大附屬中學(xué)高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷(含答案解析)_第2頁(yè)
2023年福建師范大學(xué)大附屬中學(xué)高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷(含答案解析)_第3頁(yè)
2023年福建師范大學(xué)大附屬中學(xué)高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷(含答案解析)_第4頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)滿(mǎn)足,設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽(yáng)馬體積的最大值為時(shí),塹堵的外接球的體積為()A. B. C. D.3.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A.12 B.10 C.8 D.4.已知,,,是球的球面上四個(gè)不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.5.設(shè),,,則()A. B. C. D.6.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i7.()A. B. C. D.8.在三角形中,,,求()A. B. C. D.9.已知偶函數(shù)在區(qū)間內(nèi)單調(diào)遞減,,,,則,,滿(mǎn)足()A. B. C. D.10.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線(xiàn)畫(huà)出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.11.已知,,分別是三個(gè)內(nèi)角,,的對(duì)邊,,則()A. B. C. D.12.設(shè)全集為R,集合,,則A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.我國(guó)著名的數(shù)學(xué)家秦九韶在《數(shù)書(shū)九章》提出了“三斜求積術(shù)”.他把三角形的三條邊分別稱(chēng)為小斜、中斜和大斜.三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個(gè)數(shù),小斜平方乘以大斜平方,送到上面得到的那個(gè)數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實(shí)”,1作為“隅”,開(kāi)平方后即得面積.所謂“實(shí)”、“隅”指的是在方程中,p為“隅”,q為“實(shí)”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點(diǎn)D是邊AB上一點(diǎn),,,,,則的面積為_(kāi)_______.14.已知多項(xiàng)式滿(mǎn)足,則_________,__________.15.已知數(shù)列滿(mǎn)足,且,則______.16.記為數(shù)列的前項(xiàng)和,若,則__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,平面,,為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.18.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點(diǎn),且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.19.(12分)設(shè)直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),與橢圓交于兩點(diǎn),設(shè)直線(xiàn)(為坐標(biāo)原點(diǎn))的斜率分別為,若.(1)證明:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)是否存在常數(shù),滿(mǎn)足?并說(shuō)明理由.20.(12分)已知為坐標(biāo)原點(diǎn),點(diǎn),,,動(dòng)點(diǎn)滿(mǎn)足,點(diǎn)為線(xiàn)段的中點(diǎn),拋物線(xiàn):上點(diǎn)的縱坐標(biāo)為,.(1)求動(dòng)點(diǎn)的軌跡曲線(xiàn)的標(biāo)準(zhǔn)方程及拋物線(xiàn)的標(biāo)準(zhǔn)方程;(2)若拋物線(xiàn)的準(zhǔn)線(xiàn)上一點(diǎn)滿(mǎn)足,試判斷是否為定值,若是,求這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.21.(12分)如圖所示,在四棱錐中,底面是棱長(zhǎng)為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn).(1)求證:平面;(2)求二面角的正切值.22.(10分)已知函數(shù).(1)當(dāng)時(shí),判斷在上的單調(diào)性并加以證明;(2)若,,求的取值范圍.

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【答案解析】

結(jié)合函數(shù)的對(duì)應(yīng)性,利用充分條件和必要條件的定義進(jìn)行判斷即可.【題目詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【答案點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)的對(duì)應(yīng)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.2.B【答案解析】

利用均值不等式可得,即可求得,進(jìn)而求得外接球的半徑,即可求解.【題目詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又陽(yáng)馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【答案點(diǎn)睛】本題以中國(guó)傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運(yùn)算、直觀(guān)想象等核心素養(yǎng).3.B【答案解析】

由等比數(shù)列的性質(zhì)求得,再由對(duì)數(shù)運(yùn)算法則可得結(jié)論.【題目詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【答案點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查對(duì)數(shù)的運(yùn)算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.4.A【答案解析】

由題意畫(huà)出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【題目詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過(guò)E,F(xiàn)作平面ABC與平面DBC的垂線(xiàn),相交于O,則O為四面體的球心,由,得正方形OEGF的邊長(zhǎng)為,則,四面體的外接球的半徑,球O的表面積為.故選A.【答案點(diǎn)睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.5.A【答案解析】

先利用換底公式將對(duì)數(shù)都化為以2為底,利用對(duì)數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【題目詳解】,,,因此,故選:A.【答案點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.6.B【答案解析】

利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出【題目詳解】,則復(fù)數(shù)z的虛部為.故選:B.【答案點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.7.A【答案解析】

分子分母同乘,即根據(jù)復(fù)數(shù)的除法法則求解即可.【題目詳解】解:,故選:A【答案點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.8.A【答案解析】

利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【題目詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【答案點(diǎn)睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.9.D【答案解析】

首先由函數(shù)為偶函數(shù),可得函數(shù)在內(nèi)單調(diào)遞增,再由,即可判定大小【題目詳解】因?yàn)榕己瘮?shù)在減,所以在上增,,,,∴.故選:D【答案點(diǎn)睛】本題考查函數(shù)的奇偶性和單調(diào)性,不同類(lèi)型的數(shù)比較大小,應(yīng)找一個(gè)中間數(shù),通過(guò)它實(shí)現(xiàn)大小關(guān)系的傳遞,屬于中檔題.10.C【答案解析】

作出三視圖所表示幾何體的直觀(guān)圖,可得直觀(guān)圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【題目詳解】如圖為幾何體的直觀(guān)圖,上下底面為腰長(zhǎng)為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【答案點(diǎn)睛】本題考查三視圖還原幾何體的直觀(guān)圖、球的體積公式,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意球心的確定.11.C【答案解析】

原式由正弦定理化簡(jiǎn)得,由于,可求的值.【題目詳解】解:由及正弦定理得.因?yàn)椋源肷鲜交?jiǎn)得.由于,所以.又,故.故選:C.【答案點(diǎn)睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,屬于中檔題.12.B【答案解析】分析:由題意首先求得,然后進(jìn)行交集運(yùn)算即可求得最終結(jié)果.詳解:由題意可得:,結(jié)合交集的定義可得:.本題選擇B選項(xiàng).點(diǎn)睛:本題主要考查交集的運(yùn)算法則,補(bǔ)集的運(yùn)算法則等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13..【答案解析】

利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術(shù)”公式即可求得答案.【題目詳解】,所以,由余弦定理可知,得.根據(jù)“三斜求積術(shù)”可得,所以.【答案點(diǎn)睛】本題考查正切的和角公式,同角三角函數(shù)的基本關(guān)系式,余弦定理的應(yīng)用,考查學(xué)生分析問(wèn)題的能力和計(jì)算整理能力,難度較易.14.【答案解析】∵多項(xiàng)式滿(mǎn)足∴令,得,則∴∴該多項(xiàng)式的一次項(xiàng)系數(shù)為∴∴∴令,得故答案為5,7215.【答案解析】

數(shù)列滿(mǎn)足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【題目詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.【答案點(diǎn)睛】本題考查了等比數(shù)列定義,考查了對(duì)數(shù)的運(yùn)算性質(zhì),考查了等比數(shù)列的通項(xiàng)公式,是中檔題.16.-254【答案解析】

利用代入即可得到,即是等比數(shù)列,再利用等比數(shù)列的通項(xiàng)公式計(jì)算即可.【題目詳解】由已知,得,即,所以又,即,,所以是以-4為首項(xiàng),2為公比的等比數(shù)列,所以,即,所以。故答案為:【答案點(diǎn)睛】本題考查已知與的關(guān)系求,考查學(xué)生的數(shù)學(xué)運(yùn)算求解能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見(jiàn)解析;(2)【答案解析】

(1)取的中點(diǎn),連接,根據(jù)中位線(xiàn)的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.(2)以所在的直線(xiàn)為軸建立空間直角坐標(biāo)系,再求得平面的法向量與平面的法向量進(jìn)而求得二面角的余弦值即可.【題目詳解】(1)證明:如圖,取的中點(diǎn),連接.又為的中點(diǎn),則是的中位線(xiàn).所以且.又且,所以且.所以四邊形是平行四邊形.所以.因?yàn)?為的中點(diǎn),所以.因?yàn)?所以.因?yàn)槠矫?所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知兩兩互相垂直,所以分別以所在的直線(xiàn)為軸建立如圖所示的空間直角坐標(biāo)系:因?yàn)?所以點(diǎn).則.設(shè)平面的法向量為,由,得,令,得平面的一個(gè)法向量為;顯然平面的一個(gè)法向量為;設(shè)二面角的大小為,則.故二面角的余弦值是.【答案點(diǎn)睛】本題主要考查了線(xiàn)面垂直的證明以及建立空間直角坐標(biāo)系求解二面角的問(wèn)題,需要用到線(xiàn)線(xiàn)垂直與線(xiàn)面垂直的轉(zhuǎn)換以及法向量的求法等.屬于中檔題.18.(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析;(Ⅲ).【答案解析】

(I)取的中點(diǎn),連接,通過(guò)證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點(diǎn),易得面,利用棱錐的體積公式,計(jì)算出棱錐的體積.【題目詳解】(Ⅰ)取的中點(diǎn),連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點(diǎn),所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點(diǎn),即面,.【答案點(diǎn)睛】本小題主要考查線(xiàn)面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.19.(1)證明見(jiàn)解析(0,2);(2)存在,理由見(jiàn)解析【答案解析】

(1)設(shè)直線(xiàn)l的方程為y=kx+b代入拋物線(xiàn)的方程,利用OA⊥OB,求出b,即可知直線(xiàn)過(guò)定點(diǎn)(2)由斜率公式分別求出,,聯(lián)立直線(xiàn)與拋物線(xiàn),橢圓,再由根與系數(shù)的關(guān)系得,,,代入,,化簡(jiǎn)即可求解.【題目詳解】(1)證明:由題知,直線(xiàn)l的斜率存在且不過(guò)原點(diǎn),故設(shè)由可得,.,,故所以直線(xiàn)l的方程為故直線(xiàn)l恒過(guò)定點(diǎn).(2)由(1)知設(shè)由可得,,即存在常數(shù)滿(mǎn)足題意.【答案點(diǎn)睛】本題主要考查了直線(xiàn)與拋物線(xiàn)、橢圓的位置關(guān)系,直線(xiàn)過(guò)定點(diǎn)問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.20.(1)曲線(xiàn)的標(biāo)準(zhǔn)方程為.拋物線(xiàn)的標(biāo)準(zhǔn)方程為.(2)見(jiàn)解析【答案解析】

(1)由題知|PF1|+|PF2|2|F1F2|,判斷動(dòng)點(diǎn)P的軌跡W是橢圓,寫(xiě)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)平面向量數(shù)量積運(yùn)算和點(diǎn)A在拋物線(xiàn)上求出拋物線(xiàn)C的標(biāo)準(zhǔn)方程;(2)設(shè)出點(diǎn)P的坐標(biāo),再表示出點(diǎn)N和Q的坐標(biāo),根據(jù)題意求出的值,即可判斷結(jié)果是否成立.【題目詳解】(1)由題知,,所以,因此動(dòng)點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓,又知,,所以曲線(xiàn)的標(biāo)準(zhǔn)方程為.又由題知,所以,所以,又因?yàn)辄c(diǎn)在拋物線(xiàn)上,所以,所以?huà)佄锞€(xiàn)的標(biāo)準(zhǔn)方程為.(2)設(shè),,由題知,所以,即,所以,又因?yàn)?,,所以,所以為定值,且定值?.【答案點(diǎn)睛】本題考查了圓錐曲線(xiàn)的定義與性質(zhì)的應(yīng)用問(wèn)題,考查拋物線(xiàn)的幾何性質(zhì)及點(diǎn)在曲線(xiàn)上的代換,也考查了推理與運(yùn)算能力,是中檔題.21.(1)見(jiàn)證明;(2)【答案解析】

(1)取PD中點(diǎn)G,可證EFGA是平行四邊形,從而,得證線(xiàn)面平行;(2)取AD中點(diǎn)O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【題目詳解】(1)證明:取PD中點(diǎn)G,連結(jié)為的中位線(xiàn),且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點(diǎn)O,連結(jié)PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【答案點(diǎn)睛】本題考查線(xiàn)面平行證明,考查求二面角.求二面角的步驟是一作二證三計(jì)算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計(jì)算.22.(1)在為增函數(shù);證明見(jiàn)解析(2)【答案解析】

(1)令,求出,可推得,故在為增函數(shù);(2)令,則,由此利用分類(lèi)討論思想和導(dǎo)數(shù)性質(zhì)求出實(shí)數(shù)的取值范圍.【題目詳解】(1)當(dāng)時(shí),.記,則,當(dāng)時(shí),,.所以,所以在單調(diào)遞增,所以.因?yàn)?,所以,所以在為增函?shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論