彈性力學(xué)課件35_第1頁(yè)
彈性力學(xué)課件35_第2頁(yè)
彈性力學(xué)課件35_第3頁(yè)
彈性力學(xué)課件35_第4頁(yè)
彈性力學(xué)課件35_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

3.3BENDINGOFASIMPLEBEAMUNDERUNIFORMLOADConsiderasimplebeam,withlength2landdepthh,subjectedtoauniformlydistributedloadofintensityq.forconvenience,onlyaunitwidthofthebeamisconsidered,sothereactionateachendwillbeql.xh1yh/2h/2oqqqThesemi-inversemethodwillbeemployedhere.Justasthebendingstressxandtheshearingstressxyaremainlyproducedbythemomentandtheshearingforcerespectively,thecrushingstressyismainlyproducedbythedirectloadonthebeam.Sincethedirectloadqdoesnotvarywithx,wemayassumethaty

doesnotvarywithxeitherandconsequentlyitisonlyafunctionofy:y=f(y)Todeterminethefunctionf(y),f1(y)andf2(y),wesubstitutetheexpressionforintocompatibilityequation,obtainingwheref1(y)andf2(y)arearbitraryfunctions.Thisisaquadraticequationofx,butitmustbesatisfiedforallvaluesofxbetween–landl,astheconditionofcompatibilityrequires.Thisispossibleonlywhenthecoefficientsofx2andx,aswellasthetermindependentofx,arezero:(1)(2)(3)Integrationof(1)and(2)yields:Heretheconstantterminf1(y)isneglected,becauseitwillonlyresultinalinearterminandnotaffectthestress.Substitutingfinto(3)andintegrating,wehave:Theconstanttermandthetermlinearinyareneglect,becausetheywillnotaffectthestress.Thestresscomponentswillbe:Theseexpressionssatisfythedifferentialequationsofequilibriumandthecompatibilityequation.Hence,ifthearbitraryconstantsA,B,,Kcanbechosentosatisfyalltheboundaryconditions,theseexpressionswillbetherightsolutionoftheproblem.xyh/2h/2oqqq(1)considertheconditionsofsymmetryThus,theexpressionsforx、ymustbeevenfunctionofx,whilethatforxymustbeoddfunctionofx.ThisrequiresSincetheyzplaneisaplaneofsymmetryofthebeamandtheloading,thestressdistributionmustbesymmetricwithrespecttotheplane.E=0F=0G=0xyh/2h/2oqqq(2)considerboundaryconditionsSubstitutingthestresscomponentsexpressionsintotheseequationsandnotingthatE=F=G=0,wehaveNowinordertodetermineHandK,wecanconsidertheboundaryconditionsattheendsofthebeam(theleftandrightendsofthebeamareonlysmallportionsoftheboundary).Iftheboundaryconditionstherecannotbesatisfiedexactly,wemayapplytheSaint-Venant’sprincipletohavetheconditionsapproximatelysatisfied.xyh/2h/2oqqqBoundaryconditionsatends:(1)(2)(3)From(1),wehave:K=0From(2),wehave:(3)issatisfiedNowtheexpressionsforthestresscomponentsare:ThestressdistributiononatypicalcrosssectionisapproximatelyshowninFig.:xyxyComparethesolutionobtainedhereandthatgiveninmechanicsofmaterials,Forthebeamofunitwidth,wehave:So,thestresscomponentscaberewrittenas:Weseethatthebendingstressxgiveninmechanicsofmaterialsmustbesupplementedwithacorrectiontermwhiletheshearingstressxyneedsnocorrection.Astothecrushingstressy,itisonlyconsideredinelasticityandnotinmechanicsofmaterialsatall.Itshouldbenotedthattheaboveequationsrepresenttheexactsolutiononlyifattheends(x=l)therearenormalforcesdistributedaccordingtothelawAndtheshearingforcesaredistributedaccordingtothelaw:However,ateachend,thenormalforcesareequivalenttozero(havingzeroresultantforceandzeroresultantmoment)whiletheshearingforcesareequivalenttoanupwardforceql.Hence,bysaint-Venant’sprinciple,thestresscomponentsrepresenttherightsolutionforthebeamexceptneartheends,eveniftherearenonormalforcesontheendsortheshearingforcesaredistributedinanymannerdifferentfromthatshownabove.3.4TRIANGULARGRAVITYWALLxyggyConsideradamoraretainingwallwithtriangularsectionsubjectedtotheactionofgravityandthepressureofimpoundedliquid.Letthedensityofthewallmaterialbeandthatoftheliquidbe.Atanypointinthewall,eachofthestresscomponentsmusyconsistoftwoparts:xyggy(1)producedbygravity:isproportionaltog(2)producedbythepressure:isproportionaltogHence,ifthestresscomponentscanbeexpressionsintheformofpolynomials,theymustbecombinationsoftheexpressionsintheformsofAgx,Bgy,Cgx,Dgy.WemayassumethestressfunctionisapolynomialofthirddegreeX=0Y=gTheseexpressionshavealreadysatisfiedthedifferentialequationsofequilibriumandthecompatibilityequation.Itremainstoinspectwhethertheboundaryconditionscanalsobesatisfiedbypropervaluesofthearbitraryconstantsa,b,c,d.xyggyBoundaryconditions:(1)theverticalsurface

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論