組合梁截面彈性分析(PPT共36)_第1頁
組合梁截面彈性分析(PPT共36)_第2頁
組合梁截面彈性分析(PPT共36)_第3頁
組合梁截面彈性分析(PPT共36)_第4頁
組合梁截面彈性分析(PPT共36)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第六章組合梁截截面彈性性分析6.1概概述組合梁的的正常使使用極限限狀態(tài)分分析均按按彈性方法進行。對于直接接承受動力力荷載的組合梁梁,需要要用彈性性分析方方法來計計算其強度,包括彎曲應(yīng)力力,剪切應(yīng)力力及折算應(yīng)力力的驗算。。在組合梁梁的彈性性分析中中,通常常采用如如下假設(shè)設(shè):鋼和混凝土材材料均為理想的線彈性性體。鋼梁與混凝土土翼板之間連連接可靠,滑滑移可以忽略略不計,符合合平截面變形假假定。有效寬度范圍圍內(nèi)的混凝土翼板按按實際面積計計算。不扣除其中中受拉開裂的的部分;板托托面積忽略不不計;對于壓壓型鋼板組合合梁,壓型鋼鋼板肋內(nèi)的混混凝土面積也也忽略不計。。翼板內(nèi)的鋼筋忽略不計計。6.2組合合梁正應(yīng)力分分析鋼-混凝土組組合梁的彈性性計算方法可可以利用材料力學(xué)公式式,但材料力學(xué)是是針對單質(zhì)連續(xù)彈性性體的,因此對由由鋼和混凝土土兩種材料組組成的組合截截面,首先應(yīng)把他換換算成同一材材料的截面。。一混凝土單元元,面積為Ac,彈性模量為為Ec,在應(yīng)力σc時應(yīng)變?yōu)棣與,根據(jù)合力不不變及應(yīng)變相相同條件,把把混凝土單元元換算成彈性性模量為Es,應(yīng)力為σs且與鋼等價的的換算截面面面積As′。由合力大小不不變得:由應(yīng)變協(xié)同條件得:由式(e)可可得將式(e)代代入(c),,則有式中αE——鋼材彈性模量量Es與混凝土彈性性模量Ec之比值。根據(jù)上述基本本換算關(guān)系就就可以按照圖圖示方法將組組合梁換算為為與之等價的的換算截面。為了保持組合合截面形心高高度即合力位位置在換算前前后保持不變變,即保證截截面對于主軸的慣性矩矩保持不變,換算時應(yīng)固定混凝土翼翼板厚度而僅僅改變其寬度度。圖6-1中be為混凝土翼板板的有效寬度度,beq為換算寬度。板托部分在在計算中忽略略不計。換算截面的慣慣性矩Is和Ic分別表示鋼梁和混凝土翼板的慣性矩,dc表示鋼梁形心到混混凝土翼板形形心的距離。。換算截面的形形心位置:式中分別表示鋼梁和混凝土翼板形心到鋼梁底底面的距離。。6.2.2不考慮滑移效效應(yīng)的組合梁梁截面應(yīng)力計計算不考慮鋼梁與混凝土土界面之間的的滑移,組合梁截面的應(yīng)力分布如下圖所所示。對于鋼梁部分分:對于混凝土部部分:式中M——截面彎矩設(shè)計計值;I——換算截面慣性性矩;y——截面上某某點對換算截截面形心軸的的坐標(biāo),σc,σs為混凝土板和和鋼梁的應(yīng)力力,均以受拉為正。6.2.3考慮滑移效應(yīng)應(yīng)的組合梁截截面應(yīng)力計算算彈性計算中通通常忽略鋼與混凝凝土交界面上上的滑移。但實際上,,由于滑移效應(yīng)的存在,導(dǎo)致截面實際際的彈性抗彎彎承載力小于按照換算截面面法得到的彈彈性抗彎承載載力,即在相相同的彎矩作作用下,考慮滑移效應(yīng)應(yīng)之后截面的的法向應(yīng)力會大大于按換算截面法法得到的計算算結(jié)果。假設(shè):鋼梁與混凝土翼板板交界面上存存在相對滑移移,但二者的的曲率相同,,滑移應(yīng)變引引起的附加應(yīng)應(yīng)力按線性分布。根據(jù)假設(shè)得到的計計算模型如圖圖6-4所示。由于滑移應(yīng)變εs的存在,截面面上存在附加彎矩ΔM,組合梁的實際際彎矩——Mp=M-ΔΔM設(shè)Mp=ζM,ζ--滑移效應(yīng)引起的組合截截面彈性彎矩減小小的折減系數(shù)ΔM可簡單的表示示為:ΔM=(1-ζ)M。交界面無相對對滑移時,即即連接件的剛剛度K→∞,ξ=0,ΔM=0即Mp=M式中M--換算截面法得得到的對應(yīng)鋼鋼梁開始屈服服時的彎矩Mpy--彈性極限狀態(tài)態(tài)時鋼梁的屈服時抗彎承載力力截面的法向應(yīng)力可以表示為:式中σ——截面上某一點的應(yīng)力力;W——按換算截截面法得到的的相應(yīng)的截面抵抵抗矩。6.3組合梁的剪應(yīng)力分析析根據(jù)換算截面面法對于鋼材,剪剪應(yīng)力為對于混凝土,,剪應(yīng)力為腹板在混凝土土區(qū)時t=be剪應(yīng)力的計算算點,采用原原則:換算截面中和和軸位于鋼梁梁腹板內(nèi)時,鋼梁的剪應(yīng)力力計算點取換換算截面中和和軸處無板托,混凝土翼板板的剪應(yīng)力計計算點取混凝土與鋼梁梁上翼緣連接處;有板托,計算點上移板托高度度2.換算截面中和和軸位于鋼梁梁以上時,鋼梁的剪應(yīng)力力計算點取鋼梁腹板上邊邊緣處,混凝土翼板的的剪應(yīng)力計算算點取換算截面中中和軸處。鋼梁在同一部部位處彎曲應(yīng)力和剪剪應(yīng)力都較大大時,應(yīng)驗算折算應(yīng)力力是否滿足要要求,計算公式如如下:折算應(yīng)力驗算算點通常取鋼梁腹板的上上下邊緣處,該處彎曲應(yīng)力力和剪應(yīng)力均均較大。例題6-1某組合樓蓋體體系,采用簡簡支組合梁,,跨度L=7m,間距3m,截面尺寸如如圖。試按彈彈性方法驗算算其截面承載載力并進行變變形校核。已已知混凝土板板厚度90mm,混凝土強度度等級C30;焊接工字鋼鋼梁,鋼材Q235;施工活荷載載標(biāo)準(zhǔn)值1kN/m2,樓面活荷載標(biāo)標(biāo)準(zhǔn)值3kN/m2,準(zhǔn)永久值系系數(shù)0.5,樓面鋪裝及及吊頂荷載標(biāo)標(biāo)準(zhǔn)值為1.5kN/m2,施工時只在在跨中設(shè)一個個臨時支撐。。荷載標(biāo)準(zhǔn)值設(shè)計值鋼梁自重混凝土重量施工活荷載荷載合計78.5×4208/

=0.33kN/m25×3×0.09=6.75kN/m1×3=3kN/mq0k=10.08kN/m0.33×1.2=0.4kN/m6.75×1.2=8.1kN/m3×1.4=4.2kN/mqO=12.7kN/m解:(1)施工階段內(nèi)內(nèi)力計算施工階段,鋼鋼梁承受的荷荷載如下:施工時,只在鋼梁跨中中設(shè)一個臨時時支撐,內(nèi)力如圖6-8所示??缰薪孛鍹0=-19.45kNm,V0=27.78kN支座截面V0’=19.45kN(2)使用階段內(nèi)內(nèi)力計算使用階段,組組合梁承受的的荷載如下::荷載標(biāo)準(zhǔn)值設(shè)計值短期效應(yīng)部分:樓面活荷載(非準(zhǔn)永久值部分)荷載合計3×3×0.5=4.5kN/mQ2k=4.5kN/m4.5×1.4=6.3kN/mQ2=6.3kN/m長期效應(yīng)部分:樓面鋪裝及吊頂樓面活荷載(準(zhǔn)永久值部分)荷載合計1.5×3=4.5kN/m3×3×0.5=4.5kN/mq1k=9kN/m4.5×1.2=5.4kN/m4.5×1.4=6.3kN/mq1=11.7kN/m臨時支撐應(yīng)力Fk=44.10kNF=55.56kN跨中截面支座截面(3)施工階階段截面特征鋼梁截面參數(shù)數(shù)如下:鋼梁上翼緣截截面面積鋼梁腹板截面面面積鋼梁下翼緣截截面面積鋼梁截面面積積鋼梁截面形心心到鋼梁梁底底的距離鋼梁截面慣性性矩(4)使用階段截面特性鋼材的彈性模模量C30混凝土的彈性性模量短期效應(yīng)下的的彈性模量比比鋼梁上翼緣寬寬度梁內(nèi)側(cè)和外側(cè)側(cè)的翼緣計算算寬度混凝土翼板有有效寬度混凝土翼板截截面積短期效應(yīng)作用用下:長期效應(yīng)作用用下:(5)截面承載力力驗算截面承載力驗驗算如表所示示。Q235鋼f=215N/mm2,fv=125N/mm2.驗算表明,按按彈性方法驗驗算,截面抗彎承載載力不滿足要要求。截面承載力驗驗算驗算項目施工階段使用階段總應(yīng)力鋼梁截面(Is)彈性換算截面(I1)徐變換算截面(I2)跨中截面混凝土翼板邊緣壓應(yīng)力σa----2.35-7.97-10.32鋼梁頂部應(yīng)力σb57.970.09-26.3431.72鋼梁底板應(yīng)力σf-46.8354.18250.61257.96鋼梁腹板最大剪應(yīng)力τh-13.70037.3423.64鋼梁腹部上端點壓應(yīng)力σc55.871.17-20.8036.24鋼梁腹部上端點剪應(yīng)力τc-7.32011.324.00鋼梁腹部上端點折算應(yīng)力σeqc36.90鋼梁腹部下端點拉應(yīng)力σd-44.0353.46246.91256.34鋼梁腹部下端點剪應(yīng)力τd-9.7306.09-3.46鋼梁腹部下端點折算應(yīng)力σeqd255.01支座截面鋼梁腹板最大剪應(yīng)力τh9.598.9992.38110.966.4溫差應(yīng)力及混混凝土收縮應(yīng)應(yīng)力分析鋼與混凝土材材料的溫度線膨脹系數(shù)幾幾乎相等,在相同的溫溫升下,他們們之間的溫度度變形基本協(xié)協(xié)調(diào),可以不計由此引起起的溫度應(yīng)力力。組合梁的溫度度應(yīng)力主要由由鋼梁與混凝土土板之間溫度度差所引起。鋼材的導(dǎo)熱熱系數(shù)是混凝凝土的50倍左右,當(dāng)環(huán)環(huán)境溫度劇烈烈變化時,鋼材的溫度很很快接近環(huán)境境溫度,混凝凝土的溫度則則變化較慢,此時,鋼梁梁和混凝土之之間就產(chǎn)生溫溫度差,從而而在梁截面上上產(chǎn)生自平衡的內(nèi)應(yīng)應(yīng)力。對于簡支組合合梁,內(nèi)應(yīng)力力會引起次應(yīng)力和次撓撓度。對于露天環(huán)境境下的組合梁梁和直接受熱熱源作用的組組合梁,需要要計算溫差應(yīng)力。溫差應(yīng)力的計計算為簡化分析,,通常計算中中可以采用一一下假設(shè):(1)同一截面內(nèi)混凝土板的溫溫度完全相同同,鋼梁的溫溫度也完全相相同,整個截面內(nèi)內(nèi)只存在兩個個溫度,溫差差僅有兩個溫溫度決定。(2)沿梁全長各截面的溫度度分布情況相相同。鋼梁和混凝土土橋面板的計算溫差一般般采用10-15oC(在有可能發(fā)生生更顯著溫差差的情況下則則另作考慮)。溫差應(yīng)力按彈性方法計算算。組合梁的截面面如圖6-9所示,假設(shè)混混凝土溫度低低于鋼梁,溫差為ΔtooC,混凝土線膨脹系數(shù)為為αt.以下推導(dǎo)中中,Δt為正正,應(yīng)變和應(yīng)應(yīng)力均以拉為為正,壓為負負。對于簡支支組合梁,溫溫差應(yīng)力按以以下過程計算算:步驟一,如圖圖所示,假設(shè)設(shè)混凝土自由收收縮,鋼梁與混凝凝土之間無連接?;炷恋某醭鯌?yīng)變εc0=-αtΔt,初應(yīng)力σc0=0,此時鋼梁中應(yīng)變和和應(yīng)力均為0。步驟二,如圖圖所示,在鋼鋼梁形心軸位位置施加假想壓力力N,使鋼梁均勻勻受壓,壓應(yīng)應(yīng)變?yōu)棣羣Δt,此時,混凝凝土中應(yīng)力,,應(yīng)變?nèi)员3殖植蛔?,鋼梁梁中初?yīng)變?yōu)闉棣舠0=–αtΔt,初應(yīng)力為σs0=Esεs=–EsαtΔt,其中A為鋼梁面積,,E為鋼材彈性模模量。步驟三,如圖圖所示,恢復(fù)鋼梁與混混凝土之間的的連接,由于二者應(yīng)應(yīng)變完全相同同,恢復(fù)連接接后應(yīng)力及應(yīng)應(yīng)變均不發(fā)生生變化。然后后在鋼梁形心心軸位置施加拉力T,抵消原來施施的假想壓力力N。此時,組合合梁截面處于于偏心受拉狀態(tài)態(tài),設(shè)拉力T的作用點與換換算截面形心心之間距離為為y,則偏心拉力力T在組合梁截面面中產(chǎn)生的應(yīng)應(yīng)力為:鋼梁截面中混凝土截面中中三個步驟進行行疊加,則組合梁的的外力合力為0,符合內(nèi)力平平衡條件和變變形協(xié)調(diào)條件件。三個步驟驟的應(yīng)力疊加加結(jié)果就是組合梁由于溫溫差而產(chǎn)生的的內(nèi)應(yīng)力。其中,鋼梁應(yīng)力為:混凝土板應(yīng)力力為混凝土收縮應(yīng)應(yīng)力計算1)混凝土的收縮縮與他的組成,環(huán)境及持續(xù)時間有關(guān)。2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論