![統(tǒng)一的大數(shù)據(jù)分析及AI應(yīng)用平臺_第1頁](http://file4.renrendoc.com/view/4c599f583bafa516f96c9fe940f6f55e/4c599f583bafa516f96c9fe940f6f55e1.gif)
![統(tǒng)一的大數(shù)據(jù)分析及AI應(yīng)用平臺_第2頁](http://file4.renrendoc.com/view/4c599f583bafa516f96c9fe940f6f55e/4c599f583bafa516f96c9fe940f6f55e2.gif)
![統(tǒng)一的大數(shù)據(jù)分析及AI應(yīng)用平臺_第3頁](http://file4.renrendoc.com/view/4c599f583bafa516f96c9fe940f6f55e/4c599f583bafa516f96c9fe940f6f55e3.gif)
![統(tǒng)一的大數(shù)據(jù)分析及AI應(yīng)用平臺_第4頁](http://file4.renrendoc.com/view/4c599f583bafa516f96c9fe940f6f55e/4c599f583bafa516f96c9fe940f6f55e4.gif)
![統(tǒng)一的大數(shù)據(jù)分析及AI應(yīng)用平臺_第5頁](http://file4.renrendoc.com/view/4c599f583bafa516f96c9fe940f6f55e/4c599f583bafa516f96c9fe940f6f55e5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
技術(shù)創(chuàng)新,變革未來統(tǒng)一的大數(shù)據(jù)分析及AI應(yīng)用平臺All
products,
computer
systems,
dates,
and
figures
are
preliminary
based
on
current
expectations,
and
are
subject
to
change
without
notice.2IntelGPUfutureAutomatedDrivingDedicatedMedia/VisionAcceleratio
DLnferencn I eDedicatedDLTrainingGraphics,Media&
Analytics2H’192H’19NNP-LNNP-IFlexible
IfneededDedicatededgeCloudDevIceOneSizeDoes
NotFitAll31Anopensourceversionisavailableat:01.org/openvinotoolkit*Othernamesandbrandsmaybeclaimedasthepropertyof
others.Developerpersonasshowaboverepresenttheprimaryuserbaseforeachrow,butarenot
mutually-exclusiveAllproducts,computersystems,dates,andfiguresarepreliminarybasedoncurrentexpectations,andaresubjecttochangewithout
notice.TOOLKITSAppdeveloperslibrariesDatascientistsKernelsLibrarydevelopersOpensourceplatformforbuildingE2EAnalytics&AIapplicationsonApacheSpark*withdistributedTensorFlow*,Keras*,
BigDLDeeplearninginferencedeploymentonCPU/GPU/FPGA/VPUforCaffe*,TensorFlow*,MXNet*,ONNX*,
Kaldi*Opensource,scalable,andextensibledistributeddeeplearningplatformbuiltonKubernetes
(BETA)Intel-optimized
FrameworksAndmoreframeworkoptimizationsunderwayincludingPaddlePaddle*,Chainer*,CNTK*&
othersPythonScikit-learnPandasNumPyRCartRandom
Foreste1071DistributedMlLib(on
Spark)MahoutIntel?
Distribution
for
Python*Inteldistributionoptimizedformachine
learningIntel?Data
Analytics
AccelerationLibrary
(DAAL)Highperformancemachinelearning&dataanalytics
libraryOpensourcecompilerfordeeplearningmodelcomputationsoptimizedformultipledevices(CPU,GPU,NNP)frommultipleframeworks(TF,MXNet,
ONNX)Intel?Math
Kernel
LibraryforDeep
NeuralNetworks
(MKL-DNN)OpensourceDNNfunctions
forCPU/integrated
graphicsMachine
learning Deep
learning*****SpeedUp
DevelopmentUsingOpenAI
SoftwareDistributed,
High-PerformanceDeepLearning
FrameworkforApache
Spark*/intel-analytics/bigdlAnalytics+AI
PlatformDistributedTensorFlow*,Keras*and
BigDLonApache
Spark*/intel-analytics/analytics-zooAI
onUnifyingAnalytics+AIonApache
Spark**Othernamesandbrandsmaybeclaimedasthepropertyof
others.WhyAnalytics
Zoo?Real-WorldML/DLApplicationsAreComplexDataAnalytics
Pipelines“Hidden
Technical
Debt
in
Machine
Learning
Systems”,Sculleyetal.,Google,NIPS2015
PaperLarge-ScaleImageRecognitionat
JD.com/en-us/articles/building-large-scale-image-feature-extraction-with-bigdl-at-jdcomChasmb/wDeepLearningandBigDataCommunitiesDeeplearning
expertsTheChasmReal-worldusers(bigdatausers,datascientists,analysts,
etc.)Distributed,
High-PerformanceDeepLearning
FrameworkforApache
Spark*/intel-analytics/bigdlAnalytics+AI
PlatformDistributedTensorFlow*,Keras*and
BigDLonApache
Spark*/intel-analytics/analytics-zooAI
onUnifyingAnalytics+AIonApache
Spark**Othernamesandbrandsmaybeclaimedasthepropertyof
others./en-us/videos/analytics-zoo-overviewAnalyticsZoo
VideoAnalyticsZoo:End-to-EndDLPipelineMadeEasyforBig
DataPrototypeonlaptopusingsample
dataExperimentonclusterswithhistory
dataDeploymentwithproduction,distribtued
bigdata
pipelines“Zero”codechangefromlaptoptodistributed
clusterDirectlyaccessingproductionbigdata
(Hadoop/Hive/HBase)Easilyprototypingtheend-to-end
pipelineSeamlesslydeployedonproductionbigdata
clustersWhatisAnalytics
Zoo?Analytics
ZooBERTtfpark:DistributedTF
onBigDatannframes:SparkDataframes&
MLPipelinesforDeep
LearningDistributedKerasw/autogradonBig
DataDistributedModelServing(batch,streaming&
online)Image
ClassificationObject
Detectionimage3D
imageTransformertextSeq2SeqUse
caseModelFeature
EngineeringHigh
LevelPipelinesBackend/Librarytime
seriesRecommendation Anomaly
Detection Text
Classification Text
Matching
End-to-End,
Integrated
Data
Analytics
+
AI
Platform /intel-analytics/analytics-zooKeras PyTorch BigDL NLP
Architect Apache
Spark Apache
FlinkMKLDNN OpenVINO Intel?Optane?
DCPMM DLBoost
(VNNI)TensorFlowRayAnalyticsZooUnifiedAnalytics+AIPlatformforBig
DataBuildend-to-enddeeplearningapplicationsforbig
dataDistributedTensorFlowon
SparkKerasAPI(withautograd&transferlearningsupport)on
Sparknnframes:nativeDLsupportforSparkDataFramesandML
PipelinesProductionizedeeplearningapplicationsforbigdataat
scalePlainJava/PythonmodelservingAPIs(w/OpenVINO
support)SupportWebServices,Spark,Flink,Storm,Kafka,etc.Out-of-the-box
solutionsBuilt-indeeplearningmodels,featureengineeringoperations,andreferenceusecasesDistributedTF&Kerason
SparkDatawranglingandanalysisusing
PySparkDeeplearning
modeldevelopmentusingTensorFlowor
KerasDistributedtraining
/inferenceon
Spark#pyspark
codetrain_rdd=spark.hadoopFile(…).map(…)dataset=
TFDataset.from_rdd(train_rdd,…)#tensorflow
codeimporttensorflowas
tfslim=
tf.contrib.slimimages,labels=
dataset.tensorswithslim.arg_scope(lenet.lenet_arg_scope()):logits,end_points=lenet.lenet(images,
…)loss=tf.reduce_mean(\tf.losses.sparse_softmax_cross_entropy(\logits=logits,
labels=labels))#distributedtrainingon
Sparkoptimizer=TFOptimizer.from_loss(loss,Adam(…))
\optimizer.optimize(end_trigger=MaxEpoch(5))WriteTensorFlowcodeinlineinPySpark
programSparkDataframe&MLPipelinefor
DL#Sparkdataframetransformationsparquetfile=spark.read.parquet(…)train_df=
parquetfile.withColumn(…)#Keras
APImodel=
Sequential().add(Convolution2D(32,3,3,activation='relu',input_shape=…))
\.add(MaxPooling2D(pool_size=(2,2)))
\.add(Flatten()).add(Dense(10,
activation='softmax')))#SparkML
pipelineEstimater=NNEstimater(model,CrossEntropyCriterion())
\.setLearningRate(0.003).setBatchSize(40).setMaxEpoch(5)
\.setFeaturesCol("image")nnModel=
estimater.fit(train_df)DistributedModel
ServingHDFS/S3KafkaFlumeKinesisTwitterSpoutAnalyticsZooModelSpoutBoltBoltBoltAnalyticsZooModelBoltBoltDistributedmodelservinginWebService,Flink,Kafka,Storm,
etc.PlainJavaorPythonAPI,withOpenVINOandDLBoost(VNNI)
supportAnalyticsZooUse
CasesComputerVisionBasedProductDefectDetectionin
Midea/en-us/articles/industrial-inspection-platform-in-midea-and-kuka-using-distributed-tensorflow-on-
analyticsNLPBasedCustomerServiceChatbotforMicrosoft
Azure/en-us/articles
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年高中語文詩歌部分第四單元金黃的稻束地之子半棵樹邊界望鄉(xiāng)習(xí)題含解析新人教版選修中國現(xiàn)代詩歌散文欣賞
- 校衛(wèi)隊退隊申請書
- 改名字申請書
- 舊房改建申請書
- 2025年度國際貿(mào)易摩擦應(yīng)對咨詢服務(wù)合同匯編
- 2025年度城市安全防范造價咨詢與應(yīng)急管理體系合同
- 《鄒忌諷齊王納諫》比較閱讀82篇(歷年中考語文文言文閱讀試題匯編)(含答案與翻譯)(截至2024年)
- 2025年度國際市場鴨苗出口合作協(xié)議書
- 電子商務(wù)的供應(yīng)鏈管理創(chuàng)新
- 2025年度汪怡與李明正式離婚財產(chǎn)分割及子女撫養(yǎng)協(xié)議書
- 短視頻運營實戰(zhàn):抖音短視頻運營
- 杏花鄉(xiāng)衛(wèi)生院崗位說明樣本
- 大數(shù)據(jù)與會計單招面試題
- 深圳人才公園功能分析報告
- Interstellar-星際穿越課件
- 2023-2024學(xué)年貴州省黔西南州八年級上冊1月月考語文質(zhì)量檢測試卷(附答案)
- 閱讀理解:如何找文章線索 課件
- 產(chǎn)品設(shè)計思維 課件 第3-5章 產(chǎn)品設(shè)計的問題思維、產(chǎn)品設(shè)計的功能思維、產(chǎn)品設(shè)計的形式思維
- 餐券模板完整
- 2023年節(jié)能服務(wù)行業(yè)市場分析報告及未來發(fā)展趨勢
- 小區(qū)排水管網(wǎng)修復(fù)施工方案
評論
0/150
提交評論