版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過點(diǎn)的直線與曲線交于兩點(diǎn),若,則直線的斜率為()A. B.C.或 D.或2.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.3.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有4.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫出的是某多面體的三視圖,則該幾何體的各個(gè)面中最大面的面積為()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.6.已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.7.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.8.我國(guó)宋代數(shù)學(xué)家秦九韶(1202-1261)在《數(shù)書九章》(1247)一書中提出“三斜求積術(shù)”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實(shí);一為從隅,開平方得積.其實(shí)質(zhì)是根據(jù)三角形的三邊長(zhǎng),,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或9.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值為()A. B. C. D.10.一個(gè)算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.11.中,,為的中點(diǎn),,,則()A. B. C. D.212.閱讀下面的程序框圖,運(yùn)行相應(yīng)的程序,程序運(yùn)行輸出的結(jié)果是()A.1.1 B.1 C.2.9 D.2.8二、填空題:本題共4小題,每小題5分,共20分。13.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說“是乙或丙獲獎(jiǎng).”乙說:“甲、丙都未獲獎(jiǎng).”丙說:“我獲獎(jiǎng)了”.丁說:“是乙獲獎(jiǎng).”四位歌手的話只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是__________.14.展開式中的系數(shù)為_______________.15.某部門全部員工參加一項(xiàng)社會(huì)公益活動(dòng),按年齡分為三組,其人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個(gè)容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總?cè)藬?shù)為__________.16.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時(shí),恒成立,求的取值范圍.18.(12分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動(dòng)新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調(diào)查研究新能源汽車市場(chǎng)的生產(chǎn)與銷售.下圖是我國(guó)某地區(qū)年至年新能源汽車的銷量(單位:萬臺(tái))按季度(一年四個(gè)季度)統(tǒng)計(jì)制成的頻率分布直方圖.(1)求直方圖中的值,并估計(jì)銷量的中位數(shù);(2)請(qǐng)根據(jù)頻率分布直方圖估計(jì)新能源汽車平均每個(gè)季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預(yù)計(jì)年的銷售量.19.(12分)[選修4-5:不等式選講]:已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.20.(12分)在如圖所示的多面體中,平面平面,四邊形是邊長(zhǎng)為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點(diǎn),求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.21.(12分)已知函數(shù),其中.(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);(2)求證:.22.(10分)在中,角的對(duì)邊分別為,且滿足.(Ⅰ)求角的大??;(Ⅱ)若的面積為,,求和的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線的傾斜角為,進(jìn)而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設(shè)與曲線相切于點(diǎn),則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.2.D【解析】
先根據(jù)已知條件求解出的通項(xiàng)公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因?yàn)?,?shù)列是單調(diào)遞增數(shù)列,所以,則,化簡(jiǎn)得,所以.故選:D.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.3.C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),,顯然符合是等差數(shù)列,但是此時(shí)不成立,故本說法不正確;B:當(dāng)時(shí),,顯然符合是等比數(shù)列,但是此時(shí)不成立,故本說法不正確;C:當(dāng)時(shí),因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時(shí),一定有,故本說法正確;D:當(dāng)時(shí),若時(shí),顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.4.B【解析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個(gè)正方體中的三棱錐,最大面的表面邊長(zhǎng)為的等邊三角形,故其面積為,故選B.【點(diǎn)睛】本題考查了幾何體的三視圖問題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問題.5.B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【點(diǎn)睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.6.B【解析】
由題意畫出圖形,設(shè)球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,,,由,得.如圖:設(shè)三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點(diǎn)睛】本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎(chǔ)知識(shí),考查空間想象能力、邏輯思維能力、運(yùn)算求解能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.7.C【解析】
由每個(gè)函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因?yàn)楹瘮?shù)和在遞增,而在遞減.故選:C【點(diǎn)睛】本題主要考查常見簡(jiǎn)單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.8.C【解析】
將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關(guān)系求解.【詳解】已知,,,代入,得,即,解得,當(dāng)時(shí),由余弦弦定理得:,.當(dāng)時(shí),由余弦弦定理得:,.故選:C【點(diǎn)睛】本題主要考查余弦定理和平方關(guān)系,還考查了對(duì)數(shù)學(xué)史的理解能力,屬于基礎(chǔ)題.9.C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.10.D【解析】
首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語句性質(zhì),然后對(duì)循環(huán)體進(jìn)行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項(xiàng).【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框?yàn)樘鲅h(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時(shí)退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,,故選D.【點(diǎn)睛】題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時(shí)一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時(shí)一定要正確控制循環(huán)次數(shù);(5)要注意各個(gè)框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.11.D【解析】
在中,由正弦定理得;進(jìn)而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,考查了學(xué)生的運(yùn)算求解能力.12.C【解析】
根據(jù)程序框圖的模擬過程,寫出每執(zhí)行一次的運(yùn)行結(jié)果,屬于基礎(chǔ)題.【詳解】初始值,第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C【點(diǎn)睛】本題考查了循環(huán)結(jié)構(gòu)的程序框圖的讀取以及運(yùn)行結(jié)果,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.丙【解析】若甲獲獎(jiǎng),則甲、乙、丙、丁說的都是錯(cuò)的,同理可推知乙、丙、丁獲獎(jiǎng)的情況,可知獲獎(jiǎng)的歌手是丙.考點(diǎn):反證法在推理中的應(yīng)用.14.【解析】
把按照二項(xiàng)式定理展開,可得的展開式中的系數(shù).【詳解】解:,故它的展開式中的系數(shù)為,故答案為:.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.15.60【解析】
根據(jù)樣本容量及各組人數(shù)比,可求得C組中的人數(shù);由組中甲、乙二人均被抽到的概率是可求得C組的總?cè)藬?shù),即可由各組人數(shù)比求得總?cè)藬?shù).【詳解】三組人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個(gè)容量為20的樣本,則三組抽取人數(shù)分別.設(shè)組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.【點(diǎn)睛】本題考查了分層抽樣的定義與簡(jiǎn)單應(yīng)用,古典概型概率的簡(jiǎn)單應(yīng)用,由各層人數(shù)求總?cè)藬?shù)的應(yīng)用,屬于基礎(chǔ)題.16.3【解析】
雙曲線的焦點(diǎn)在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因?yàn)殡p曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點(diǎn)睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點(diǎn)位置,寫出雙曲線的漸近線方程的對(duì)應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2).【解析】
(1)對(duì)求導(dǎo),令,求導(dǎo)研究單調(diào)性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當(dāng)時(shí),轉(zhuǎn)化利用均值不等式即得證;當(dāng),有兩個(gè)不同的零點(diǎn),,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因?yàn)?,,所以,存在使得,即.所以,?dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù),故當(dāng)時(shí),取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當(dāng),即時(shí),為的增函數(shù),所以,,由(1)中,得,即.故滿足題意.②當(dāng),即時(shí),有兩個(gè)不同的零點(diǎn),,且,即,若時(shí),為減函數(shù),(*)若時(shí),為增函數(shù),所以的最小值為.注意到時(shí),,且此時(shí),(?。┊?dāng)時(shí),,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當(dāng)時(shí),,所以,所以由(*)知時(shí),為減函數(shù),所以,不滿足時(shí),恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了利用導(dǎo)數(shù)研究函數(shù)的最值和不等式的恒成立問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,分類討論,數(shù)學(xué)運(yùn)算能力,屬于較難題.18.(1),中位數(shù)為;(2)新能源汽車平均每個(gè)季度的銷售量為萬臺(tái),以此預(yù)計(jì)年的銷售量約為萬臺(tái).【解析】
(1)根據(jù)頻率分布直方圖中所有矩形面積之和為可計(jì)算出的值,利用中位數(shù)左邊的矩形面積之和為可求得銷量的中位數(shù)的值;(2)利用每個(gè)矩形底邊的中點(diǎn)值乘以相應(yīng)矩形的面積,相加可得出銷量的平均數(shù),由此可預(yù)計(jì)年的銷售量.【詳解】(1)由于頻率分布直方圖的所有矩形面積之和為,則,解得,由于,因此,銷量的中位數(shù)為;(2)由頻率分布直方圖可知,新能源汽車平均每個(gè)季度的銷售量為(萬臺(tái)),由此預(yù)測(cè)年的銷售量為萬臺(tái).【點(diǎn)睛】本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)以及平均數(shù)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.19.(1)(2)【解析】
(1)當(dāng)時(shí),,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當(dāng)時(shí),,原不等式可化為,①當(dāng)時(shí),不等式①可化為,解得,此時(shí);當(dāng)時(shí),不等式①可化為,解得,此時(shí);當(dāng)時(shí),不等式①可化為,解得,此時(shí),綜上,原不等式的解集為.(2)由題意得,,因?yàn)榈淖钚≈禐?,所以,由,得,所以,?dāng)且僅當(dāng),即,時(shí),的最小值為.【點(diǎn)睛】本題主要考查了絕對(duì)值不等式問題,對(duì)于含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對(duì)值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對(duì)值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動(dòng)向.20.(1)見解析(2)【解析】試題分析:(1)第(1)問,轉(zhuǎn)化成證明平面,再轉(zhuǎn)化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據(jù)與平面所成角的正弦值為求出再建立空間直角坐標(biāo)系,求出二面角的余弦值.試題解析:(1)連接,因?yàn)樗倪呅螢榱庑危?因?yàn)槠矫嫫矫?,平面平面,平面,,所以平?又平面,所以.因?yàn)?,所?因?yàn)?,所以平?因?yàn)榉謩e為,的中點(diǎn),所以,所以平面(2)設(shè),由(1)得平面.由,,得,.過點(diǎn)作,與的延長(zhǎng)線交于點(diǎn),取的中點(diǎn),連接,,如圖所示,又,所以為等邊三角形,所以,又平面平面,平面平面,平面,故平面.因?yàn)闉槠叫兴倪呅?,所以,所以平?又因?yàn)?,所以平?因?yàn)椋云矫嫫矫?由(1),得平面,所以平面,所以.因?yàn)?,所以平面,所以是與平面所成角.因?yàn)椋?,所以平面,平面,因?yàn)?,所以平?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版實(shí)驗(yàn)室裝修、設(shè)備采購一體化合同范本3篇
- 2025版庭院園藝設(shè)計(jì)租賃合同示范文本大全3篇
- 《社會(huì)主義發(fā)展戰(zhàn)略》課件
- 《我的家鄉(xiāng)河北》課件
- 基于2025年度標(biāo)準(zhǔn)的軟件開發(fā)與技術(shù)服務(wù)合同3篇
- 2025版木托盤產(chǎn)業(yè)鏈整合合同4篇
- 2025版學(xué)校飯?zhí)檬称钒踩c營(yíng)養(yǎng)管理承包合同3篇
- 云母制品在平板電腦觸控面板材料中的應(yīng)用考核試卷
- 公路工程現(xiàn)場(chǎng)急救與事故處理考核試卷
- 2025年度木材進(jìn)出口貿(mào)易代理合同標(biāo)準(zhǔn)文本2篇
- 2024版?zhèn)€人私有房屋購買合同
- 2024爆炸物運(yùn)輸安全保障協(xié)議版B版
- 2025年度軍人軍事秘密保護(hù)保密協(xié)議與信息安全風(fēng)險(xiǎn)評(píng)估合同3篇
- 《食品與食品》課件
- 讀書分享會(huì)《白夜行》
- 光伏工程施工組織設(shè)計(jì)
- DB4101-T 121-2024 類家庭社會(huì)工作服務(wù)規(guī)范
- 化學(xué)纖維的鑒別與測(cè)試方法考核試卷
- 2024-2025學(xué)年全國(guó)中學(xué)生天文知識(shí)競(jìng)賽考試題庫(含答案)
- 作品著作權(quán)獨(dú)家授權(quán)協(xié)議(部分授權(quán))
- 取水泵站施工組織設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論