版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個(gè)物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個(gè),這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.82.若兩個(gè)非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.3.如圖所示的程序框圖,當(dāng)其運(yùn)行結(jié)果為31時(shí),則圖中判斷框①處應(yīng)填入的是()A. B. C. D.4.設(shè),命題“存在,使方程有實(shí)根”的否定是()A.任意,使方程無實(shí)根B.任意,使方程有實(shí)根C.存在,使方程無實(shí)根D.存在,使方程有實(shí)根5.已知是平面內(nèi)互不相等的兩個(gè)非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.6.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.7.某設(shè)備使用年限x(年)與所支出的維修費(fèi)用y(萬元)的統(tǒng)計(jì)數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計(jì)劃維修費(fèi)用超過15萬元將該設(shè)備報(bào)廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年8.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點(diǎn)都在球上,則球的表面積為()A. B. C. D.9.已知等差數(shù)列中,則()A.10 B.16 C.20 D.2410.復(fù)數(shù)的虛部為()A. B. C.2 D.11.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.12.設(shè)分別為雙曲線的左、右焦點(diǎn),過點(diǎn)作圓的切線,與雙曲線的左、右兩支分別交于點(diǎn),若,則雙曲線漸近線的斜率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.平面向量,,(R),且與的夾角等于與的夾角,則.14.運(yùn)行下面的算法偽代碼,輸出的結(jié)果為_____.15.(5分)已知函數(shù),則不等式的解集為____________.16.平面區(qū)域的外接圓的方程是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項(xiàng)和;(2)若,求數(shù)列的前n項(xiàng)和為.18.(12分)已知點(diǎn)是拋物線的頂點(diǎn),,是上的兩個(gè)動(dòng)點(diǎn),且.(1)判斷點(diǎn)是否在直線上?說明理由;(2)設(shè)點(diǎn)是△的外接圓的圓心,點(diǎn)到軸的距離為,點(diǎn),求的最大值.19.(12分)已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的值域;(2),,求實(shí)數(shù)的取值范圍.20.(12分)表示,中的最大值,如,己知函數(shù),.(1)設(shè),求函數(shù)在上的零點(diǎn)個(gè)數(shù);(2)試探討是否存在實(shí)數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.21.(12分)已知x∈R,設(shè),,記函數(shù).(1)求函數(shù)取最小值時(shí)x的取值范圍;(2)設(shè)△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.22.(10分)已知數(shù)列滿足對任意都有,其前項(xiàng)和為,且是與的等比中項(xiàng),.(1)求數(shù)列的通項(xiàng)公式;(2)已知數(shù)列滿足,,設(shè)數(shù)列的前項(xiàng)和為,求大于的最小的正整數(shù)的值.
2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【答案解析】
利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【題目詳解】從五行中任取兩個(gè),所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【答案點(diǎn)睛】本小題主要考查古典概型的計(jì)算,屬于基礎(chǔ)題.2.A【答案解析】
設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律可求得的值,即為所求.【題目詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【答案點(diǎn)睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運(yùn)算性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中等題.3.C【答案解析】
根據(jù)程序框圖的運(yùn)行,循環(huán)算出當(dāng)時(shí),結(jié)束運(yùn)行,總結(jié)分析即可得出答案.【題目詳解】由題可知,程序框圖的運(yùn)行結(jié)果為31,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.此時(shí)輸出.故選:C.【答案點(diǎn)睛】本題考查根據(jù)程序框圖的循環(huán)結(jié)構(gòu),已知輸出結(jié)果求條件框,屬于基礎(chǔ)題.4.A【答案解析】
只需將“存在”改成“任意”,有實(shí)根改成無實(shí)根即可.【題目詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實(shí)根”的否定是“任意,使方程無實(shí)根”.故選:A【答案點(diǎn)睛】本題考查含有一個(gè)量詞的命題的否定,此類問題要注意在兩個(gè)方面作出變化:1.量詞,2.結(jié)論,是一道基礎(chǔ)題.5.C【答案解析】試題分析:如下圖所示,則,因?yàn)榕c的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點(diǎn):1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).6.B【答案解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【題目詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【答案點(diǎn)睛】本題考查三角形中角的正弦值的計(jì)算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.7.D【答案解析】
根據(jù)樣本中心點(diǎn)在回歸直線上,求出,求解,即可求出答案.【題目詳解】依題意在回歸直線上,,由,估計(jì)第年維修費(fèi)用超過15萬元.故選:D.【答案點(diǎn)睛】本題考查回歸直線過樣本中心點(diǎn)、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.8.B【答案解析】
分別取、的中點(diǎn)、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過點(diǎn)作平面的垂線與過點(diǎn)作平面的垂線交于點(diǎn),在中計(jì)算出,再利用勾股定理計(jì)算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【題目詳解】如下圖所示,分別取、的中點(diǎn)、,連接、、,由于是以為直角等腰直角三角形,為的中點(diǎn),,,且、分別為、的中點(diǎn),所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點(diǎn),同理可知,的外心為點(diǎn),分別過點(diǎn)作平面的垂線與過點(diǎn)作平面的垂線交于點(diǎn),則點(diǎn)在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【答案點(diǎn)睛】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時(shí)考查了計(jì)算能力,屬于中等題.9.C【答案解析】
根據(jù)等差數(shù)列性質(zhì)得到,再計(jì)算得到答案.【題目詳解】已知等差數(shù)列中,故答案選C【答案點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的常考題型.10.D【答案解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算,化簡出,即可得出虛部.【題目詳解】解:=,故虛部為-2.故選:D.【答案點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算和復(fù)數(shù)的概念.11.A【答案解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【題目詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項(xiàng):【答案點(diǎn)睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.12.C【答案解析】
如圖所示:切點(diǎn)為,連接,作軸于,計(jì)算,,,,根據(jù)勾股定理計(jì)算得到答案.【題目詳解】如圖所示:切點(diǎn)為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【答案點(diǎn)睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13.2【答案解析】試題分析:,與的夾角等于與的夾角,所以考點(diǎn):向量的坐標(biāo)運(yùn)算與向量夾角14.【答案解析】
模擬程序的運(yùn)行過程知該程序運(yùn)行后計(jì)算并輸出的值,用裂項(xiàng)相消法求和即可.【題目詳解】模擬程序的運(yùn)行過程知,該程序運(yùn)行后執(zhí)行:.故答案為:【答案點(diǎn)睛】本題考查算法語句中的循環(huán)語句和裂項(xiàng)相消法求和;掌握循環(huán)體執(zhí)行的次數(shù)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.15.【答案解析】
易知函數(shù)的定義域?yàn)椋?,則是上的偶函數(shù).由于在上單調(diào)遞增,而在上也單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性知在上單調(diào)遞增,又在上單調(diào)遞增,故知在上單調(diào)遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調(diào)遞增,可得,則,解得,故不等式的解集為.16.【答案解析】
作出平面區(qū)域,可知平面區(qū)域?yàn)槿切?,求出三角形的三個(gè)頂點(diǎn)坐標(biāo),設(shè)三角形的外接圓方程為,將三角形三個(gè)頂點(diǎn)坐標(biāo)代入圓的一般方程,求出、、的值,即可得出所求圓的方程.【題目詳解】作出不等式組所表示的平面區(qū)域如下圖所示:由圖可知,平面區(qū)域?yàn)?,?lián)立,解得,則點(diǎn),同理可得點(diǎn)、,設(shè)的外接圓方程為,由題意可得,解得,,,因此,所求圓的方程為.故答案為:.【答案點(diǎn)睛】本題考查三角形外接圓方程的求解,同時(shí)也考查了一元二次不等式組所表示的平面區(qū)域的求作,考查數(shù)形結(jié)合思想以及運(yùn)算求解能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【答案解析】
(1)利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)求出公差,從而求出,再利用等比數(shù)列的前項(xiàng)和公式即可求解.(2)由(1)求出,再利用裂項(xiàng)求和法即可求解.【題目詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【答案點(diǎn)睛】本題考查了等差數(shù)列、等比數(shù)列的通項(xiàng)公式、等比數(shù)列的前項(xiàng)和公式、裂項(xiàng)求和法,需熟記公式,屬于基礎(chǔ)題.18.(1)不在,證明見詳解;(2)【答案解析】
(1)假設(shè)直線方程,并于拋物線方程聯(lián)立,結(jié)合韋達(dá)定理,計(jì)算,可得,然后驗(yàn)證可得結(jié)果.(2)分別計(jì)算線段中垂線的方程,然后聯(lián)立,根據(jù)(1)的條件可得點(diǎn)的軌跡方程,然后可得焦點(diǎn),結(jié)合拋物線定義可得,計(jì)算可得結(jié)果.【題目詳解】(1)設(shè)直線方程,根據(jù)題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點(diǎn),所以可知點(diǎn)不在直線上.(2)設(shè)線段的中點(diǎn)為線段的中點(diǎn)為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點(diǎn)軌跡方程為焦點(diǎn)為,所以當(dāng)三點(diǎn)共線時(shí),有最大所以【答案點(diǎn)睛】本題考查直線于拋物線的綜合應(yīng)用,第(1)問中難點(diǎn)在于計(jì)算處,第(2)問中關(guān)鍵在于得到點(diǎn)的軌跡方程,直線與圓錐曲線的綜合常常要聯(lián)立方程,結(jié)合韋達(dá)定理,屬難題.19.(1);(2).【答案解析】
(1)將代入函數(shù)的解析式,將函數(shù)的及解析式變形為分段函數(shù),利用二次函數(shù)的基本性質(zhì)可求得函數(shù)的值域;(2)由參變量分離法得出在區(qū)間內(nèi)有解,分和討論,求得函數(shù)的最大值,即可得出實(shí)數(shù)的取值范圍.【題目詳解】(1)當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.函數(shù)的值域?yàn)?;?)不等式等價(jià)于,即在區(qū)間內(nèi)有解當(dāng)時(shí),,此時(shí),,則;當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增,當(dāng)時(shí),,則.綜上,實(shí)數(shù)的取值范圍是.【答案點(diǎn)睛】本題主要考查含絕對值函數(shù)的值域與含絕對值不等式有解的問題,利用絕對值的應(yīng)用將函數(shù)轉(zhuǎn)化為二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵,考查分類討論思想的應(yīng)用,屬于中等題.20.(1)個(gè);(1)存在,.【答案解析】試題分析:(1)設(shè),對其求導(dǎo),及最小值,從而得到的解析式,進(jìn)一步求值域即可;(1)分別對和兩種情況進(jìn)行討論,得到的解析式,進(jìn)一步構(gòu)造,通過求導(dǎo)得到最值,得到滿足條件的的范圍.試題解析:(1)設(shè),.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設(shè),結(jié)合與在上圖象可知,這兩個(gè)函數(shù)的圖象在上有兩個(gè)交點(diǎn),即在上零點(diǎn)的個(gè)數(shù)為1...........................5分(或由方程在上有兩根可得)(1)假設(shè)存在實(shí)數(shù),使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設(shè),令,得遞增;令,得遞減,∴,當(dāng)即時(shí),,∴,∵,∴4.故當(dāng)時(shí),對恒成立,.......................8分當(dāng)即時(shí),在上遞減,∴.∵,∴,故當(dāng)時(shí),對恒成立............................10分②若對恒成立,則,∴...........11分由①及②得,.故存在實(shí)數(shù),使得對恒成立,且的取值范圍為................................................11分考點(diǎn):導(dǎo)數(shù)應(yīng)用.【思路點(diǎn)睛】本題考查了函數(shù)恒成立問題;利用導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性,進(jìn)一步求最值;屬于難題.本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性.確定零點(diǎn)的個(gè)數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個(gè)數(shù),如果函數(shù)較為復(fù)雜,可結(jié)合導(dǎo)數(shù)知識確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點(diǎn)的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理.恒成立問題以及可轉(zhuǎn)化為恒成立問題的問題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導(dǎo)數(shù)來求解.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想方法.21.(1);(2)【答案解析】
(1)先根據(jù)向量的數(shù)量積的運(yùn)算,以及二倍角公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專屬2024法務(wù)服務(wù)協(xié)議模板版B版
- 2025年度健康養(yǎng)老產(chǎn)業(yè)地產(chǎn)合作投資協(xié)議書模板4篇
- 科技賦能社團(tuán)管理
- 專業(yè)能源管理服務(wù)協(xié)議標(biāo)準(zhǔn)格式書版
- 業(yè)務(wù)員與公司的合作協(xié)議書
- 專業(yè)美甲教學(xué)合作協(xié)議書(2024年版)
- 專業(yè)油漆施工協(xié)議2024年版詳則版B版
- 2025年度茶葉行業(yè)培訓(xùn)與職業(yè)資格認(rèn)證合同4篇
- 2024知識產(chǎn)權(quán)保護(hù)及保密協(xié)議范本下載
- 海南省安全員C證理論考試試題
- 中央2025年國務(wù)院發(fā)展研究中心有關(guān)直屬事業(yè)單位招聘19人筆試歷年參考題庫附帶答案詳解
- 外呼合作協(xié)議
- 小學(xué)二年級100以內(nèi)進(jìn)退位加減法800道題
- 2025年1月普通高等學(xué)校招生全國統(tǒng)一考試適應(yīng)性測試(八省聯(lián)考)語文試題
- 《立式輥磨機(jī)用陶瓷金屬復(fù)合磨輥輥套及磨盤襯板》編制說明
- 保險(xiǎn)公司2025年工作總結(jié)與2025年工作計(jì)劃
- 育肥牛購銷合同范例
- 暨南大學(xué)珠海校區(qū)財(cái)務(wù)辦招考財(cái)務(wù)工作人員管理單位遴選500模擬題附帶答案詳解
- DB51-T 2944-2022 四川省社會(huì)組織建設(shè)治理規(guī)范
- 2024北京初三(上)期末英語匯編:材料作文
- 2024年大型風(fēng)力發(fā)電項(xiàng)目EPC總承包合同
評論
0/150
提交評論