版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.連接雙曲線及的4個(gè)頂點(diǎn)的四邊形面積為,連接4個(gè)焦點(diǎn)的四邊形的面積為,則當(dāng)取得最大值時(shí),雙曲線的離心率為()A. B. C. D.2.已知函數(shù),其圖象關(guān)于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點(diǎn)()A.先向左平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變B.先向右平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變C.先向右平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變D.先向左平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變3.設(shè)雙曲線(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過F作AF的垂線與雙曲線交于B,C兩點(diǎn),過B,C分別作AC,AB的垂線交于點(diǎn)D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.4.陀螺是中國民間較早的娛樂工具之一,但陀螺這個(gè)名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書中才正式出現(xiàn).如圖所示的網(wǎng)格紙中小正方形的邊長均為1,粗線畫出的是一個(gè)陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.5.拋物線的焦點(diǎn)為,準(zhǔn)線為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)線段的中點(diǎn)在上的投影為,則的最大值是()A. B. C. D.6.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.127.如圖在直角坐標(biāo)系中,過原點(diǎn)作曲線的切線,切點(diǎn)為,過點(diǎn)分別作、軸的垂線,垂足分別為、,在矩形中隨機(jī)選取一點(diǎn),則它在陰影部分的概率為()A. B. C. D.8.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.9.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}10.已知,則的值等于()A. B. C. D.11.已知點(diǎn)P不在直線l、m上,則“過點(diǎn)P可以作無數(shù)個(gè)平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知拋物線:,點(diǎn)為上一點(diǎn),過點(diǎn)作軸于點(diǎn),又知點(diǎn),則的最小值為()A. B. C.3 D.5二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)學(xué)家狄里克雷對數(shù)論,數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn),是解析數(shù)論的創(chuàng)始人之一.函數(shù),稱為狄里克雷函數(shù).則關(guān)于有以下結(jié)論:①的值域?yàn)?②;③;④其中正確的結(jié)論是_______(寫出所有正確的結(jié)論的序號(hào))14.二項(xiàng)式的展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和是64,則展開式中的常數(shù)項(xiàng)為______.15.已知的終邊過點(diǎn),若,則__________.16.已知關(guān)于的不等式對于任意恒成立,則實(shí)數(shù)的取值范圍為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),試求曲線在點(diǎn)處的切線;(2)試討論函數(shù)的單調(diào)區(qū)間.18.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點(diǎn)為線段上的點(diǎn),過三點(diǎn)的平面與交于點(diǎn).將①,②,③中的兩個(gè)補(bǔ)充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.19.(12分)在中,角,,的對邊分別為,,,,,且的面積為.(1)求;(2)求的周長.20.(12分)已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.21.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.22.(10分)在中,角的對邊分別為,若.(1)求角的大小;(2)若,為外一點(diǎn),,求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
先求出四個(gè)頂點(diǎn)、四個(gè)焦點(diǎn)的坐標(biāo),四個(gè)頂點(diǎn)構(gòu)成一個(gè)菱形,求出菱形的面積,四個(gè)焦點(diǎn)構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時(shí)有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個(gè)頂點(diǎn)的坐標(biāo)為,四個(gè)焦點(diǎn)的坐標(biāo)為,四個(gè)頂點(diǎn)形成的四邊形的面積,四個(gè)焦點(diǎn)連線形成的四邊形的面積,所以,當(dāng)取得最大值時(shí)有,,離心率,故選:D.【點(diǎn)睛】該題考查的是有關(guān)雙曲線的離心率的問題,涉及到的知識(shí)點(diǎn)有共軛雙曲線的頂點(diǎn),焦點(diǎn),菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.2.D【解析】
由函數(shù)的圖象關(guān)于直線對稱,得,進(jìn)而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關(guān)于直線對稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點(diǎn)“先向左平移個(gè)單位長度,得再將橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得”即可.故選:D【點(diǎn)睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運(yùn)算求解能力,是中檔題3.A【解析】
由題意,根據(jù)雙曲線的對稱性知在軸上,設(shè),則由得:,因?yàn)榈街本€的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.4.C【解析】
根據(jù)三視圖可知,該幾何體是由兩個(gè)圓錐和一個(gè)圓柱構(gòu)成,由此計(jì)算出陀螺的表面積.【詳解】最上面圓錐的母線長為,底面周長為,側(cè)面積為,下面圓錐的母線長為,底面周長為,側(cè)面積為,沒被擋住的部分面積為,中間圓柱的側(cè)面積為.故表面積為,故選C.【點(diǎn)睛】本小題主要考查中國古代數(shù)學(xué)文化,考查三視圖還原為原圖,考查幾何體表面積的計(jì)算,屬于基礎(chǔ)題.5.B【解析】
試題分析:設(shè)在直線上的投影分別是,則,,又是中點(diǎn),所以,則,在中,所以,即,所以,故選B.考點(diǎn):拋物線的性質(zhì).【名師點(diǎn)晴】在直線與拋物線的位置關(guān)系問題中,涉及到拋物線上的點(diǎn)到焦點(diǎn)的距離,焦點(diǎn)弦長,拋物線上的點(diǎn)到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時(shí),常常考慮用拋物線的定義進(jìn)行問題的轉(zhuǎn)化.象本題弦的中點(diǎn)到準(zhǔn)線的距離首先等于兩點(diǎn)到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點(diǎn)到焦點(diǎn)的距離,從而與弦長之間可通過余弦定理建立關(guān)系.6.D【解析】
推導(dǎo)出,且,,,設(shè)中點(diǎn)為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點(diǎn)為,則平面,∴,∴,解得.故選:D【點(diǎn)睛】本題考查三視圖和錐體的體積計(jì)算公式的應(yīng)用,屬于中檔題.7.A【解析】
設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點(diǎn)的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點(diǎn),所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點(diǎn)睛】本題考查定積分的計(jì)算以及幾何概型,同時(shí)也涉及了二次函數(shù)的切線方程的求解,考查計(jì)算能力,屬于中等題.8.C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對選項(xiàng)逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項(xiàng).【詳解】函數(shù)的定義域?yàn)?,在上為減函數(shù).A選項(xiàng),的定義域?yàn)?,在上為增函?shù),不符合.B選項(xiàng),的定義域?yàn)?,不符?C選項(xiàng),的定義域?yàn)?,在上為減函數(shù),符合.D選項(xiàng),的定義域?yàn)?,不符?故選:C【點(diǎn)睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.9.C【解析】
根據(jù)集合的并集、補(bǔ)集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點(diǎn)睛】本題考查的是集合并集,補(bǔ)集的概念,屬基礎(chǔ)題.10.A【解析】
由余弦公式的二倍角可得,,再由誘導(dǎo)公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點(diǎn)睛】本題考查了學(xué)生對二倍角公式的應(yīng)用,要求學(xué)生熟練掌握三角函數(shù)中的誘導(dǎo)公式,屬于簡單題11.C【解析】
根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】點(diǎn)不在直線、上,若直線、互相平行,則過點(diǎn)可以作無數(shù)個(gè)平面,使得直線、都與這些平面平行,即必要性成立,若過點(diǎn)可以作無數(shù)個(gè)平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點(diǎn)只能作一個(gè)平面同時(shí)和兩條直線平行,則與條件矛盾,即充分性成立則“過點(diǎn)可以作無數(shù)個(gè)平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關(guān)鍵.12.C【解析】
由,再運(yùn)用三點(diǎn)共線時(shí)和最小,即可求解.【詳解】.故選:C【點(diǎn)睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運(yùn)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.②【解析】
根據(jù)新定義,結(jié)合實(shí)數(shù)的性質(zhì)即可判斷①②③,由定義求得比小的有理數(shù)個(gè)數(shù),即可確定④.【詳解】對于①,由定義可知,當(dāng)為有理數(shù)時(shí);當(dāng)為無理數(shù)時(shí),則值域?yàn)?,所以①錯(cuò)誤;對于②,因?yàn)橛欣頂?shù)的相反數(shù)還是有理數(shù),無理數(shù)的相反數(shù)還是無理數(shù),所以滿足,所以②正確;對于③,因?yàn)?,?dāng)為無理數(shù)時(shí),可以是有理數(shù),也可以是無理數(shù),所以③錯(cuò)誤;對于④,由定義可知,所以④錯(cuò)誤;綜上可知,正確的為②.故答案為:②.【點(diǎn)睛】本題考查了新定義函數(shù)的綜合應(yīng)用,正確理解題意是解決此類問題的關(guān)鍵,屬于中檔題.14.【解析】
由二項(xiàng)式系數(shù)性質(zhì)求出,由二項(xiàng)展開式通項(xiàng)公式得出常數(shù)項(xiàng)的項(xiàng)數(shù),從而得常數(shù)項(xiàng).【詳解】由題意,.展開式通項(xiàng)為,由得,∴常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)式定理,考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)展開式通項(xiàng)公式是解題關(guān)鍵.15.【解析】
】由題意利用任意角的三角函數(shù)的定義,求得的值.【詳解】∵的終邊過點(diǎn),若,.即答案為-2.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義和誘導(dǎo)公式,屬基礎(chǔ)題.16.【解析】
先將不等式對于任意恒成立,轉(zhuǎn)化為任意恒成立,設(shè),求出在內(nèi)的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對于任意恒成立,即,又因?yàn)?,,對任意恒成立,設(shè),其中,由不等式,可得:,則,當(dāng)時(shí)等號(hào)成立,又因?yàn)樵趦?nèi)有解,,則,即:,所以實(shí)數(shù)的取值范圍:.故答案為:.【點(diǎn)睛】本題考查不等式恒成立問題,利用分離參數(shù)法和構(gòu)造函數(shù),通過求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析【解析】
(1)對函數(shù)進(jìn)行求導(dǎo),可以求出曲線在點(diǎn)處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對函數(shù)進(jìn)行求導(dǎo),對實(shí)數(shù)進(jìn)行分類討論,可以求出函數(shù)的單調(diào)區(qū)間.【詳解】(1)當(dāng)時(shí),函數(shù)定義域?yàn)椋?所以切線方程為;(2)當(dāng)時(shí),函數(shù)定義域?yàn)?,在上單調(diào)遞增當(dāng)時(shí),恒成立,函數(shù)定義域?yàn)?,又在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當(dāng)時(shí),函數(shù)定義域?yàn)椋趩握{(diào)遞增,單調(diào)遞減,單調(diào)遞增當(dāng)時(shí),設(shè)的兩個(gè)根為且,由韋達(dá)定理易知兩根均為正根,且,所以函數(shù)的定義域?yàn)?,又對稱軸,且,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增【點(diǎn)睛】本題考查了曲線切線方程的求法,考查了利用函數(shù)的導(dǎo)數(shù)討論函數(shù)的單調(diào)性問題,考查了分類思想.18.(1);(2).【解析】
若補(bǔ)充②③根據(jù)已知可得平面,從而有,結(jié)合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補(bǔ)充兩個(gè)條件,結(jié)果都一樣,以①②作為條件分析;(1)設(shè),可得,進(jìn)而求出梯形的面積,可求出,即可求出結(jié)論;(2),以為坐標(biāo)原點(diǎn),建立空間坐標(biāo)系,求出坐標(biāo),由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設(shè)平面為平面.∵,∴平面,而平面平面,∴,又為中點(diǎn).設(shè),則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標(biāo)系,設(shè),則,由(1)得為平面的一個(gè)法向量,因?yàn)椋灾本€與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點(diǎn),即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.【點(diǎn)睛】本題考查空間點(diǎn)、線、面位置關(guān)系,以及體積、直線與平面所成的角,考查計(jì)算求解能力,屬于中檔題.19.(1)(2)【解析】
(1)利用正弦,余弦定理對式子化簡求解即可;(2)利用余弦定理以及三角形的面積,求解三角形的周長即可.【詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周長為【點(diǎn)睛】本題考查正弦定理以及余弦定理的應(yīng)用,三角形的面積公式,也考查計(jì)算能力,屬于基礎(chǔ)題.20.(1)證明見解析;(2)【解析】
(1)連接交于點(diǎn),連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冬季施工暖棚搭設(shè)方案
- 人教版九年級化學(xué)上冊自制第六單元課題4實(shí)驗(yàn)活動(dòng)2-二氧化碳實(shí)驗(yàn)室制取與性質(zhì)(34張)
- 2019-2020學(xué)年高中數(shù)學(xué)第2章解析幾何初步2-3空間直角坐標(biāo)系課件北師大版必修2
- 接待禮儀-素材-培訓(xùn)講學(xué)
- 教育學(xué)原理04-近現(xiàn)代高等教育發(fā)展、教師
- 2024年泰州職業(yè)技術(shù)學(xué)院高職單招數(shù)學(xué)歷年參考題庫含答案解析
- 2024年陽江市衛(wèi)校附屬醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 二零二五年離婚房產(chǎn)分割與贍養(yǎng)義務(wù)協(xié)議3篇
- 二零二五版“汽車零部件銷售協(xié)議”英文翻譯
- 2024年江西醫(yī)學(xué)高等??茖W(xué)校高職單招職業(yè)技能測驗(yàn)歷年參考題庫(頻考版)含答案解析
- 山東省濰坊市2024-2025學(xué)年高三上學(xué)期期末 地理試題(無答案)
- 勞動(dòng)法培訓(xùn)課件
- 金蝶云星辰初級考試題庫
- 常見老年慢性病防治與護(hù)理課件整理
- 履約情況證明(共6篇)
- 云南省迪慶藏族自治州各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)
- 設(shè)備機(jī)房出入登記表
- 六年級語文-文言文閱讀訓(xùn)練題50篇-含答案
- 醫(yī)用冰箱溫度登記表
- 口袋妖怪白金光圖文攻略2周目
- 日有所誦(二年級)
評論
0/150
提交評論