版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.在Rt△ABC中,cosA=,那么sinA的值是()A. B. C. D.2.如圖,在中,,,,以邊的中點(diǎn)為圓心作半圓,使與半圓相切,點(diǎn)分別是邊和半圓上的動(dòng)點(diǎn),連接,則長的最大值與最小值的和是()A.8 B.9 C.10 D.123.如果關(guān)于的方程沒有實(shí)數(shù)根,那么的最大整數(shù)值是()A.-3 B.-2 C.-1 D.04.已知圓錐的底面半徑為3cm,母線為5cm,則圓錐的側(cè)面積是()A.30πcm2 B.15πcm2 C.cm2 D.10πcm25.如圖,用一個(gè)半徑為5cm的定滑輪帶動(dòng)重物上升,滑輪上一點(diǎn)P旋轉(zhuǎn)了108°,假設(shè)繩索(粗細(xì)不計(jì))與滑輪之間沒有滑動(dòng),則重物上升了()A.πcm B.2πcm C.3πcm D.5πcm6.如圖,⊙O是△ABC的外接圓,連接OA、OB,∠C=40°,則∠OAB的度數(shù)為()A.30° B.40° C.50° D.80°7.將二次函數(shù)化成的形式為()A. B.C. D.8.如圖,某一時(shí)刻太陽光下,小明測(cè)得一棵樹落在地面上的影子長為2.8米,落在墻上的影子高為1.2米,同一時(shí)刻同一地點(diǎn),身高1.6米他在陽光下的影子長0.4米,則這棵樹的高為()米.A.6.2 B.10 C.11.2 D.12.49.如圖,A、B、C、D是⊙O上的四點(diǎn),BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°10.如圖,在圓內(nèi)接四邊形ABCD中,∠A:∠C=1:2,則∠A的度數(shù)等于()A.30° B.45° C.60° D.80°二、填空題(每小題3分,共24分)11.如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點(diǎn)E是AB邊上一動(dòng)點(diǎn),過點(diǎn)E作DE⊥AB交AC邊于點(diǎn)D,將∠A沿直線DE翻折,點(diǎn)A落在線段AB上的F處,連接FC,當(dāng)△BCF為等腰三角形時(shí),AE的長為_____.12.在一個(gè)不透明的口袋中裝有5個(gè)除了標(biāo)號(hào)外其余都完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,5,從中隨機(jī)摸出一個(gè)小球,其標(biāo)號(hào)小于4的概率為_____.13.已知反比例函數(shù)的圖象經(jīng)過點(diǎn)P(a+1,4),則a=_________________.14.若方程x2+2x-11=0的兩根分別為m、n,則mn(m+n)=______.15.如圖,在中,,,,則的長為__________.16.若關(guān)于x的一元二次方程(a﹣1)x2﹣x+1=0有實(shí)數(shù)根,則a的取值范圍為________.17.如果△ABC∽△DEF,且△ABC的三邊長分別為4、5、6,△DEF的最短邊長為12,那么△DEF的周長等于_____.18.若、是方程的兩個(gè)實(shí)數(shù)根,代數(shù)式的值是______.三、解答題(共66分)19.(10分)如圖是由兩個(gè)長方體組成的幾何體,這兩個(gè)長方體的底面都是正方形,畫出圖中幾何體的主視圖、左視圖和俯視圖.20.(6分)(1)解方程:;(2)求二次函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo).21.(6分)某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價(jià)300元,若一次性購買不超過10件時(shí),售價(jià)不變;若一次性購買超過10件時(shí),每多買2件,所買的每件服裝的售價(jià)均降低6元.已知該服裝成本是每件200元.設(shè)顧客一次性購買服裝x件時(shí),該網(wǎng)店從中獲利y元.(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(2)顧客一次性購買多少件時(shí),該網(wǎng)店從中獲利最多,并求出獲利的最大值?22.(8分)如圖,拋物線與直線交于A、B兩點(diǎn).點(diǎn)A的橫坐標(biāo)為-3,點(diǎn)B在y軸上,點(diǎn)P是y軸左側(cè)拋物線上的一動(dòng)點(diǎn),橫坐標(biāo)為m,過點(diǎn)P作PC⊥x軸于C,交直線AB于D.(1)求拋物線的解析式;(2)當(dāng)m為何值時(shí),;(3)是否存在點(diǎn)P,使△PAD是直角三角形,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.23.(8分)(問題呈現(xiàn))阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,點(diǎn)M是的中點(diǎn),則從M向BC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=DB+BA.下面是運(yùn)用“截長法”證明CD=DB+BA的部分證明過程.證明:如圖2,在CD上截取CG=AB,連接MA、MB、MC和MG.∵M(jìn)是的中點(diǎn),∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵M(jìn)D⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根據(jù)證明過程,分別寫出下列步驟的理由:①,②,③;(理解運(yùn)用)如圖1,AB、BC是⊙O的兩條弦,AB=4,BC=6,點(diǎn)M是的中點(diǎn),MD⊥BC于點(diǎn)D,則BD=;(變式探究)如圖3,若點(diǎn)M是的中點(diǎn),(問題呈現(xiàn))中的其他條件不變,判斷CD、DB、BA之間存在怎樣的數(shù)量關(guān)系?并加以證明.(實(shí)踐應(yīng)用)根據(jù)你對(duì)阿基米德折弦定理的理解完成下列問題:如圖4,BC是⊙O的直徑,點(diǎn)A圓上一定點(diǎn),點(diǎn)D圓上一動(dòng)點(diǎn),且滿足∠DAC=45°,若AB=6,⊙O的半徑為5,求AD長.24.(8分)如圖,已知,點(diǎn)、坐標(biāo)分別為、.(1)把繞原點(diǎn)順時(shí)針旋轉(zhuǎn)得,畫出旋轉(zhuǎn)后的;(2)在(1)的條件下,求點(diǎn)旋轉(zhuǎn)到點(diǎn)經(jīng)過的路徑的長.25.(10分)如圖所示的是夾文件用的鐵(塑料)夾子在常態(tài)下的側(cè)面示意圖.AC,BC表示鐵夾的兩個(gè)面,O點(diǎn)是軸,OD⊥AC于點(diǎn)D,且AD=15mm,DC=24mm,OD=10mm.已知文件夾是軸對(duì)稱圖形,試?yán)脠D②,求圖①中A,B兩點(diǎn)間的距離.26.(10分)在平面直角坐標(biāo)系中,對(duì)“隔離直線”給出如下定義:點(diǎn)是圖形上的任意一點(diǎn),點(diǎn)是圖形上的任意一點(diǎn),若存在直線:滿足且,則稱直線:是圖形與的“隔離直線”,如圖,直線:是函數(shù)的圖像與正方形的一條“隔離直線”.
(1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形的“隔離直線”的為.(2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標(biāo)軸平行,直角頂點(diǎn)的坐標(biāo)是,⊙O的半徑為,是否存在與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達(dá)式:若不存在,請(qǐng)說明理由;(3)正方形的一邊在軸上,其它三邊都在軸的左側(cè),點(diǎn)是此正方形的中心,若存在直線是函數(shù)的圖像與正方形的“隔離直線”,請(qǐng)直接寫出的取值范圍.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】利用同角三角函數(shù)間的基本關(guān)系求出sinA的值即可.【詳解】:∵Rt△ABC中,cosA=,
∴sinA==,
故選B.【點(diǎn)睛】本題考查了同角三角函數(shù)的關(guān)系,以及特殊角的三角函數(shù)值,熟練掌握同角三角函數(shù)的關(guān)系是解題的關(guān)鍵.2、C【分析】如圖,設(shè)⊙O與BC相切于點(diǎn)E,連接OE,作OP2⊥AC垂足為P2交⊙O于Q2,此時(shí)垂線段OP2最短,P2Q2最小值為OQ2-OP2,如圖當(dāng)Q2在AB邊上時(shí),P2與A重合時(shí),P2Q2最大值,由此不難解決問題.【詳解】解:如圖,設(shè)⊙O與BC相切于點(diǎn)E,連接OE,作OP2⊥AC垂足為P2交⊙O于Q2,
此時(shí)垂線段OP2最短,P2Q2最小值為OQ2-OP2,
∵AB=20,AC=8,BC=6,
∴AB2=AC2+BC2,∴∠C=90°,
∵∠OP2A=90°,∴OP2∥BC.
∵O為AB的中點(diǎn),∴P2C=P2A,OP2=BC=2.又∵BC是⊙O的切線,∴∠OEB=90°,∴OE∥AC,又O為AB的中點(diǎn),∴OE=AC=4=OQ2.
∴P2Q2最小值為OQ2-OP2=4-2=2,
如圖,當(dāng)Q2在AB邊上時(shí),P2與A重合時(shí),P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,
P2Q2最大值=AO+OQ2=5+4=9,
∴PQ長的最大值與最小值的和是20.
故選:C.【點(diǎn)睛】本題考查切線的性質(zhì),三角形中位線定理,勾股定理的逆定理以及平行線的判定等知識(shí),解題的關(guān)鍵是正確找到點(diǎn)PQ取得最大值、最小值時(shí)的位置,屬于中考??碱}型.3、B【分析】先根據(jù)根的判別式求出k的取值范圍,再從中找到最大整數(shù)即可.【詳解】解得∴k的最大整數(shù)值是-2故選:B.【點(diǎn)睛】本題主要考查根的判別式,掌握根的判別式與根的個(gè)數(shù)的關(guān)系是解題的關(guān)鍵.4、B【解析】試題解析:∵底面半徑為3cm,∴底面周長6πcm∴圓錐的側(cè)面積是×6π×5=15π(cm2),故選B.5、C【解析】試題分析:根據(jù)定滑輪的性質(zhì)得到重物上升的即為轉(zhuǎn)過的弧長,利用弧長公式得:l==3πcm,則重物上升了3πcm,故選C.考點(diǎn):旋轉(zhuǎn)的性質(zhì).6、C【分析】直接利用圓周角定理得出∠AOB的度數(shù),再利用等腰三角形的性質(zhì)得出答案.【詳解】解:∵∠ACB=40°,∴∠AOB=80°,∵AO=BO,∴∠OAB=∠OBA=(180°﹣80°)=50°.故選:C.【點(diǎn)睛】本題主要考查了三角形的外接圓與外心,圓周角定理.正確得出∠AOB的度數(shù)是解題關(guān)鍵.7、C【分析】利用配方法即可將二次函數(shù)轉(zhuǎn)化為頂點(diǎn)式.【詳解】故選:C.【點(diǎn)睛】本題主要考查二次函數(shù)的頂點(diǎn)式,掌握配方法是解題的關(guān)鍵.8、D【分析】先根據(jù)同一時(shí)刻物體的高度與其影長成比例求出從墻上的影子的頂端到樹的頂端的垂直高度,再加上落在墻上的影長即得答案.【詳解】解:設(shè)從墻上的影子的頂端到樹的頂端的垂直高度是x米,則,解得:x=11.2,所以樹高=11.2+1.2=12.4(米),故選:D.【點(diǎn)睛】本題考查的是投影的知識(shí),解本題的關(guān)鍵是正確理解題意、根據(jù)同一時(shí)刻物體的高度與其影長成比例求出從墻上的影子的頂端到樹的頂端的垂直高度.9、A【解析】解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點(diǎn)B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.10、C【分析】設(shè)∠A、∠C分別為x、2x,然后根據(jù)圓的內(nèi)接四邊形的性質(zhì)列出方程即可求出結(jié)論.【詳解】解:設(shè)∠A、∠C分別為x、2x,∵四邊形ABCD是圓內(nèi)接四邊形,∴x+2x=180°,解得,x=60°,即∠A=60°,故選:C.【點(diǎn)睛】此題考查的是圓的內(nèi)接四邊形的性質(zhì),掌握?qǐng)A的內(nèi)接四邊形的性質(zhì)是解決此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、2或或.【分析】由勾股定理求出AB,設(shè)AE=x,則EF=x,BF=1﹣2x;分三種情況討論:①當(dāng)BF=BC時(shí),列出方程,解方程即可;②當(dāng)BF=CF時(shí),F(xiàn)在BC的垂直平分線上,得出AF=BF,列出方程,解方程即可;③當(dāng)CF=BC時(shí),作CG⊥AB于G,則BG=FGBF,由射影定理求出BG,再解方程即可.【詳解】由翻折變換的性質(zhì)得:AE=EF.∵∠ACB=90°,AC=8,BC=6,∴AB1.設(shè)AE=x,則EF=x,BF=1﹣2x.分三種情況討論:①當(dāng)BF=BC時(shí),1﹣2x=6,解得:x=2,∴AE=2;②當(dāng)BF=CF時(shí).∵BF=CF,∴∠B=∠FCB.∵∠A+∠B=90°,∠FCA+∠FCB=90°,∴∠A=∠FCA,∴AF=FC.∵BF=FC,∴AF=BF,∴x+x=1﹣2x,解得:x,∴AE;③當(dāng)CF=BC時(shí),作CG⊥AB于G,如圖所示:則BG=FGBF.根據(jù)射影定理得:BC2=BG?AB,∴BG,即(1﹣2x),解得:x,∴AE;綜上所述:當(dāng)△BCF為等腰三角形時(shí),AE的長為:2或或.故答案為:2或或.【點(diǎn)睛】本題考查了翻折變換的性質(zhì)、勾股定理、射影定理、等腰三角形的性質(zhì);本題有一定難度,需要進(jìn)行分類討論.12、【分析】根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點(diǎn):①符合條件的情況數(shù)目,②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大?。驹斀狻拷猓焊鶕?jù)題意可得:標(biāo)號(hào)小于4的有1,2,3三個(gè)球,共5個(gè)球,任意摸出1個(gè),摸到標(biāo)號(hào)小于4的概率是.故答案為:【點(diǎn)睛】本題考查概率的求法與運(yùn)用,一般方法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.13、-3【分析】直接將點(diǎn)P(a+1,4)代入求出a即可.【詳解】直接將點(diǎn)P(a+1,4)代入,則,解得a=-3.【點(diǎn)睛】本題主要考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,熟練掌握反比例函數(shù)知識(shí)和計(jì)算準(zhǔn)確性是解決本題的關(guān)鍵,難度較小.14、22【分析】
【詳解】∵方程x2+2x-11=0的兩根分別為m、n,∴m+n=-2,mn=-11,∴mn(m+n)=(-11)×(-2)=22.故答案是:2215、6【分析】根據(jù)相似三角形的性質(zhì)即可得出答案.【詳解】∵DE∥BC∴∠ADE=∠ABC,∠AED=∠ACB∴△ADE∽△ABC∴∵∴又∴BC=6故答案為6.【點(diǎn)睛】本題考查的是相似三角形,比較簡單,容易把三角形的相似比看成,這一點(diǎn)尤其需要注意.16、a≤且a≠1.【分析】根據(jù)一元二次方程有實(shí)數(shù)根的條件列出關(guān)于a的不等式組,求出a的取值范圍即可.【詳解】由題意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案為a≤且a≠1.點(diǎn)睛:本題考查的是根的判別式及一元二次方程的定義,根據(jù)題意列出關(guān)于a的不等式組是解答此題的關(guān)鍵.17、1【分析】根據(jù)題意求出△ABC的周長,根據(jù)相似三角形的性質(zhì)列式計(jì)算即可.【詳解】解:設(shè)△DEF的周長別為x,△ABC的三邊長分別為4、5、6,∴△ABC的周長=4+5+6=15,∵△ABC∽△DEF,∴,解得,x=1,故答案為1.【點(diǎn)睛】本題考查的是相似三角形的性質(zhì),掌握相似三角形的周長比等于相似比是解題的關(guān)鍵.18、1【分析】先對(duì)所求代數(shù)式進(jìn)行變形為,然后將代入方程中求出的值,根據(jù)根與系數(shù)的關(guān)系求出的值,最后代入即可求解.【詳解】∵是方程的根∴∴∵、是方程的兩個(gè)實(shí)數(shù)根∴原式=故答案為:1.【點(diǎn)睛】本題主要考查一元二次方程的根,根與系數(shù)的關(guān)系,掌握根與系數(shù)的關(guān)系,能夠?qū)λ蟠鷶?shù)式進(jìn)行適當(dāng)變形是解題的關(guān)鍵.三、解答題(共66分)19、如圖所示見解析.【分析】從正面看,下面一個(gè)長方形,上面左邊一個(gè)長方形;從左面看,下面一個(gè)長方形,上面左邊一個(gè)長方形;從上面看,一個(gè)正方形左上角一個(gè)小正方形,依此畫出圖形即可.【詳解】如圖所示.【點(diǎn)睛】此題考查了三視圖,用到的知識(shí)點(diǎn)為:三視圖分為主視圖、左視圖、俯視圖,分別是從物體正面、左面和上面看,所得到的圖形.20、(1)x1=1+,x2=1﹣;(2)(5,0),(-3,0),(0,-15)【分析】(1)根據(jù)一元二次方程的求根公式,即可求解;(2)令y=0,求出x的值,令x=0,求出y的值,進(jìn)而即可得到答案.【詳解】(1)x2﹣2x﹣1=0,∵a=1,b=﹣2,c=﹣1,∴△=b2﹣4ac=4+4=8>0,∴x==,∴x1=1+,x2=1﹣;(2)令y=0,則,即:,解得:,令x=0,則y=-15,∴二次函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo)為:(5,0),(-3,0),(0,-15).【點(diǎn)睛】本題主要考查一元二次方程的解法和二次函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo),掌握一元二次方程的求根公式以及求二次函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo),是解題的關(guān)鍵.21、(1)y=100x(的整數(shù))y=x(的整數(shù));(2)購買22件時(shí),該網(wǎng)站獲利最多,最多為1408元.【分析】(1)根據(jù)題意可得出銷售量乘以每臺(tái)利潤進(jìn)而得出總利潤;(2)根據(jù)一次函數(shù)和二次函數(shù)的性質(zhì)求得最大利潤.【詳解】(1)當(dāng)?shù)恼麛?shù)時(shí),y與x的關(guān)系式為y=100x;當(dāng)?shù)恼麛?shù)時(shí),,y=(的整數(shù)),∴y與x的關(guān)系式為:y=100x(的整數(shù)),y=x(的整數(shù))(2)當(dāng)(的整數(shù)),y=100x,當(dāng)x=10時(shí),利潤有最大值y=1000元;當(dāng)10?x≤30時(shí),y=,∵a=-3<0,拋物線開口向下,∴y有最大值,當(dāng)x=時(shí),y取最大值,因?yàn)閤為整數(shù),根據(jù)對(duì)稱性得:當(dāng)x=22時(shí),y有最大值=1408元?1000元,所以顧客一次性購買22件時(shí),該網(wǎng)站獲利最多.【點(diǎn)睛】本題考查分段函數(shù)及一次函數(shù)和二次函數(shù)的性質(zhì),利用函數(shù)性質(zhì)求最值是解答此題的重要途徑,自變量x的取值范圍及取值要求是解答此題的關(guān)鍵之處.22、(1)y=x1+4x-1;(1)∴m=,-1,或-3時(shí)S四邊形OBDC=1SS△BPD【解析】試題分析:(1)由x=0時(shí)帶入y=x-1求出y的值求出B的坐標(biāo),當(dāng)x=-3時(shí),代入y=x-1求出y的值就可以求出A的坐標(biāo),由待定系數(shù)法就可以求出拋物線的解析式;(1)連結(jié)OP,由P點(diǎn)的橫坐標(biāo)為m可以表示出P、D的坐標(biāo),可以表示出S四邊形OBDC和1S△BPD建立方程求出其解即可.(3)如圖1,當(dāng)∠APD=90°時(shí),設(shè)出P點(diǎn)的坐標(biāo),就可以表示出D的坐標(biāo),由△APD∽△FCD就可與求出結(jié)論,如圖3,當(dāng)∠PAD=90°時(shí),作AE⊥x軸于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性質(zhì)就可以求出結(jié)論.試題解析:∵y=x-1,∴x=0時(shí),y=-1,∴B(0,-1).當(dāng)x=-3時(shí),y=-4,∴A(-3,-4).∵y=x1+bx+c與直線y=x-1交于A、B兩點(diǎn),∴∴∴拋物線的解析式為:y=x1+4x-1;(1)∵P點(diǎn)橫坐標(biāo)是m(m<0),∴P(m,m1+4m-1),D(m,m-1)如圖1①,作BE⊥PC于E,∴BE=-m.CD=1-m,OB=1,OC=-m,CP=1-4m-m1,∴PD=1-4m-m1-1+m=-3m-m1,∴解得:m1=0(舍去),m1=-1,m3=如圖1②,作BE⊥PC于E,∴BE=-m.PD=1-4m-m1+1-m=1-4m-m1,解得:m=0(舍去)或m=-3,∴m=,-1,或-3時(shí)S四邊形OBDC=1S△BPD;)如圖1,當(dāng)∠APD=90°時(shí),設(shè)P(a,a1+4a-1),則D(a,a-1),∴AP=m+4,CD=1-m,OC=-m,CP=1-4m-m1,∴DP=1-4m-m1-1+m=-3m-m1.在y=x-1中,當(dāng)y=0時(shí),x=1,∴(1,0),∴OF=1,∴CF=1-m.AF=4∵PC⊥x軸,∴∠PCF=90°,∴∠PCF=∠APD,∴CF∥AP,∴△APD∽△FCD,∴解得:m=1舍去或m=-1,∴P(-1,-5)如圖3,當(dāng)∠PAD=90°時(shí),作AE⊥x軸于E,∴∠AEF=90°.CE=-3-m,EF=4,AF=4PD=1-m-(1-4m-m1)=3m+m1.∵PC⊥x軸,∵PC⊥x軸,∴∠DCF=90°,∴∠DCF=∠AEF,∴AE∥CD.∴AD=(-3-m)∵△PAD∽△FEA,∴∴m=-1或m=-3∴P(-1,-5)或(-3,-4)與點(diǎn)A重合,舍去,∴P(-1,-5).考點(diǎn):二次函數(shù)綜合題.23、(問題呈現(xiàn))相等的弧所對(duì)的弦相等;同弧所對(duì)的圓周角相等;有兩組邊及其夾角分別對(duì)應(yīng)相等的兩個(gè)三角形全等;(理解運(yùn)用)1;(變式探究)DB=CD+BA;證明見解析;(實(shí)踐應(yīng)用)1或.【分析】(問題呈現(xiàn))根據(jù)圓的性質(zhì)即可求解;(理解運(yùn)用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(變式探究)證明△MAB≌△MGB(SAS),則MA=MG,MC=MG,又DM⊥BC,則DC=DG,即可求解;(實(shí)踐應(yīng)用)已知∠D1AC=45°,過點(diǎn)D1作D1G1⊥AC于點(diǎn)G1,則CG1′+AB=AG1,所以AG1=(6+2)=1.如圖∠D2AC=45°,同理易得AD2=.【詳解】(問題呈現(xiàn))①相等的弧所對(duì)的弦相等②同弧所對(duì)的圓周角相等③有兩組邊及其夾角分別對(duì)應(yīng)相等的兩個(gè)三角形全等故答案為:相等的弧所對(duì)的弦相等;同弧所定義的圓周角相等;有兩組邊及其夾角分別對(duì)應(yīng)相等的兩個(gè)三角形全等;(理解運(yùn)用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,BD=BC﹣CD=6﹣5=1,故答案為:1;(變式探究)DB=CD+BA.證明:在DB上截去BG=BA,連接MA、MB、MC、MG,∵M(jìn)是弧AC的中點(diǎn),∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(實(shí)踐應(yīng)用)如圖,BC是圓的直徑,所以∠BAC=90°.因?yàn)锳B=6,圓的半徑為5,所以AC=2.已知∠D1AC=45°,過點(diǎn)D1作D1G1⊥AC于點(diǎn)G1,則CG1′+AB=AG1,所以AG1=(6+2)=1.所以AD1=1.如圖∠D2AC=45°,同理易得AD2=.所以AD的長為1或.【點(diǎn)睛】本題考查全等三角形的判定(SAS)與性質(zhì)、等腰三角形的性質(zhì)和圓心角、弦、弧,解題的關(guān)鍵是掌握全等三角形的判定(SAS)與性質(zhì)、等腰三角形的性質(zhì)和圓心角、弦、弧.24、(1)答案見解析;(2).【分析】(1)根據(jù)題意畫出圖形即可;(2)求出OA的長,再根據(jù)弧長公式即可得出結(jié)論.【詳解】(1)如圖所示,(2)由(1)圖可得,,∴【點(diǎn)睛】本題考查的是作圖-旋轉(zhuǎn)變換,熟知圖形旋轉(zhuǎn)不變性的性質(zhì)是解答此題的關(guān)鍵.25、AB=30(mm)【解析】解:如圖所示,連接AB,與CO的延長線交于點(diǎn)E.∵夾子是軸對(duì)稱圖形,對(duì)稱軸是CE,且A,B為一組對(duì)稱點(diǎn),∴CE⊥AB,AE=EB.在Rt△AEC和Rt△ODC中,∵∠ACE=∠OCD,∴Rt△AEC∽R(shí)t△ODC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版家庭健康養(yǎng)生及食療服務(wù)合同3篇
- 二零二五年度生態(tài)雞養(yǎng)殖基地購銷合同標(biāo)準(zhǔn)版3篇
- 二零二五版桉樹生物質(zhì)能源開發(fā)合同2篇
- 二零二五年房地產(chǎn)銷售代理合同中止及終止協(xié)議6篇
- 二零二五版智能倉儲(chǔ)貨物承包運(yùn)輸一體化合同3篇
- 二零二五年智能空調(diào)銷售及綠色環(huán)保安裝合同樣本3篇
- 二零二五年度車庫產(chǎn)權(quán)買賣及物業(yè)服務(wù)合同范本3篇
- 二零二五年文化藝術(shù)品油漆保護(hù)修復(fù)合同3篇
- 二零二五年度消防產(chǎn)品認(rèn)證與檢測(cè)服務(wù)合同2篇
- 二零二五年度電腦租賃及網(wǎng)絡(luò)接入服務(wù)合同3篇
- 春節(jié)文化常識(shí)單選題100道及答案
- 24年追覓在線測(cè)評(píng)28題及答案
- TGDNAS 043-2024 成人靜脈中等長度導(dǎo)管置管技術(shù)
- 《陸上風(fēng)電場(chǎng)工程概算定額》NBT 31010-2019
- FZ∕T 63006-2019 松緊帶
- 罐區(qū)自動(dòng)化系統(tǒng)總體方案(31頁)ppt課件
- BIQS評(píng)分表模板
- 工程建設(shè)項(xiàng)目內(nèi)外關(guān)系協(xié)調(diào)措施
- 招投標(biāo)法考試試題及答案
- 皮帶輸送機(jī)工程施工電氣安裝措施要點(diǎn)
- 藥房(冰柜)溫濕度表
評(píng)論
0/150
提交評(píng)論