2023屆黑龍江省望奎縣九年級數(shù)學(xué)上冊期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2023屆黑龍江省望奎縣九年級數(shù)學(xué)上冊期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2023屆黑龍江省望奎縣九年級數(shù)學(xué)上冊期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2023屆黑龍江省望奎縣九年級數(shù)學(xué)上冊期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2023屆黑龍江省望奎縣九年級數(shù)學(xué)上冊期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如果函數(shù)的圖象與軸有公共點(diǎn),那么的取值范圍是()A. B. C. D.2.在半徑等于5cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°3.如圖,矩形矩形,連結(jié),延長分別交、于點(diǎn)、,延長、交于點(diǎn),一定能求出面積的條件是()A.矩形和矩形的面積之差 B.矩形和矩形的面積之差C.矩形和矩形的面積之差 D.矩形和矩形的面積之差4.已知二次函數(shù)圖象的一部分如圖所示,給出以下結(jié)論:;當(dāng)時(shí),函數(shù)有最大值;方程的解是,;,其中結(jié)論錯(cuò)誤的個(gè)數(shù)是A.1 B.2 C.3 D.45.如圖,過x軸正半軸上的任意一點(diǎn)P,作y軸的平行線,分別與反比例函數(shù)和的圖象交于A、B兩點(diǎn).若點(diǎn)C是y軸上任意一點(diǎn),連接AC、BC,則△ABC的面積為()A.3 B.4 C.5 D.106.下列事件是必然事件的是()A.3個(gè)人分成兩組,并且每組必有人,一定有2個(gè)人分在一組B.拋一枚硬幣,正面朝上C.隨意擲兩個(gè)均勻的骰子,朝上面的點(diǎn)數(shù)之和為6D.打開電視,正在播放動(dòng)畫片7.若函數(shù)與的圖象如圖所示,則函數(shù)的大致圖象為()A. B. C. D.8.如圖,在Rt△ABC中,∠ABC=90°,BA=BC.點(diǎn)D是AB的中點(diǎn),連結(jié)CD,過點(diǎn)B作BG⊥CD,分別交CD、CA于點(diǎn)E、F,與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連結(jié)DF.給出以下四個(gè)結(jié)論:①;②點(diǎn)F是GE的中點(diǎn);③;④,其中正確的結(jié)論個(gè)數(shù)是()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)9.三角形的兩邊長分別為3和2,第三邊的長是方程的一個(gè)根,則這個(gè)三角形的周長是()A.10 B.8或7 C.7 D.810.如圖,某小區(qū)有一塊長為18米,寬為6米的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為60平方米,兩塊綠地之間及周邊留有寬度相等的人行通道.若設(shè)人行道的寬度為x米,則可以列出關(guān)于x的方程是()A.x2+9x-8=0 B.x2-9x-8=0C.x2-9x+8=0 D.2x2-9x+8=011.如圖,在菱形中,,,為中點(diǎn),是上一點(diǎn),為上一點(diǎn),且,,交于點(diǎn),關(guān)于下列結(jié)論,正確序號的選項(xiàng)是()①,②,③④A.①② B.①②③ C.①②④ D.①③④12.如圖是一個(gè)半徑為5cm的圓柱形輸油管的橫截面,若油面寬AB=8cm,則油面的深度為()A.1cm B.1.5cm C.2cm D.2.5cm二、填空題(每題4分,共24分)13.如圖,沿傾斜角為30°的山坡植樹,要求相鄰兩棵樹間的水平距離AC為2m,那么相鄰兩棵樹的斜坡距離AB約為________m.(結(jié)果精確到0.1m)14.已知是方程的一個(gè)根,則方程另一個(gè)根是________.15.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點(diǎn),若點(diǎn)P是y軸上任意一點(diǎn),則△PAB的面積是_____.16.已知正六邊形的邊心距為,則它的周長是______.17.當(dāng)a≤x≤a+1時(shí),函數(shù)y=x2﹣2x+1的最小值為1,則a的值為_____.18.如圖,在矩形ABCD中,DE⊥AC,垂足為E,且tan∠ADE=,AC=5,則AB的長____.三、解答題(共78分)19.(8分)在正方形ABCD中,M是BC邊上一點(diǎn),且點(diǎn)M不與B、C重合,點(diǎn)P在射線AM上,將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到線段AQ,連接BP,DQ.(1)依題意補(bǔ)全圖1;(2)①連接DP,若點(diǎn)P,Q,D恰好在同一條直線上,求證:DP2+DQ2=2AB2;②若點(diǎn)P,Q,C恰好在同一條直線上,則BP與AB的數(shù)量關(guān)系為:.20.(8分)已知關(guān)于x的一元二次方程x2-2x+m=0,有兩個(gè)不相等的實(shí)數(shù)根.⑴求實(shí)數(shù)m的最大整數(shù)值;⑵在⑴的條下,方程的實(shí)數(shù)根是x1,x2,求代數(shù)式x12+x22-x1x2的值.21.(8分)有四張反面完全相同的紙牌,其正面分別畫有四個(gè)不同的幾何圖形,將四張紙牌洗勻正面朝下隨機(jī)放在桌面上.(1)從四張紙牌中隨機(jī)摸出一張,摸出的牌面圖形是中心對稱圖形的概率是.(2)小明和小亮約定做一個(gè)游戲,其規(guī)則為:先由小明隨機(jī)摸出一張,不放回.再由小亮從剩下的紙牌中隨機(jī)摸出一張,若摸出的兩張牌面圖形既是軸對稱圖形又是中心對稱圖形,則小亮獲勝,否則小明獲勝.這個(gè)游戲公平嗎?請用列表法(或畫樹狀圖)說明理由.(紙牌用表示)若不公平,請你幫忙修改一下游戲規(guī)則,使游戲公平.22.(10分)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且經(jīng)過A(1,0),C(0,3)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為B.(1)若直線y=mx+n經(jīng)過B,C兩點(diǎn),求直線BC和拋物線的解析式;(2)在拋物線的對稱軸x=-1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求點(diǎn)M的坐標(biāo).23.(10分)某果園有100棵橙子樹,每一棵樹平均結(jié)600個(gè)橙子.現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會(huì)減少.根據(jù)經(jīng)驗(yàn)估計(jì),每多種一棵樹,平均每棵樹就會(huì)少結(jié)5個(gè)橙子.(1)如果果園既要讓橙子的總產(chǎn)量達(dá)到60375個(gè),又要確保每一棵橙子樹接受到的陽光照射盡量少受影響,那么應(yīng)該多種多少棵橙子樹?(2)增種多少棵橙子樹,可以使果園橙子的總產(chǎn)量最多?最多為多少?24.(10分)如圖,甲、乙兩人在玩轉(zhuǎn)盤游戲時(shí),準(zhǔn)備了兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤A、B,每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,并在每一個(gè)扇形內(nèi)標(biāo)上數(shù)字.游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)竻^(qū)域的數(shù)字之和為0時(shí),甲獲勝;數(shù)字之和為1時(shí),乙獲勝.如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域?yàn)橹?(1)用畫樹狀圖或列表法求乙獲勝的概率;(2)這個(gè)游戲規(guī)則對甲、乙雙方公平嗎?請判斷并說明理由.25.(12分)如圖,要設(shè)計(jì)一幅寬為20cm,長30cm的矩形圖案,其中有兩橫兩豎的彩條,橫、豎彩條寬度相等,如果要使余下的圖案面積為504cm2,彩條的寬應(yīng)是多少cm.26.如圖,某城建部門計(jì)劃在新修的城市廣場的一塊長方形空地上修建一個(gè)面積為1200m2的停車場,將停車場四周余下的空地修建成同樣寬的通道,已知長方形空地的長為50m,寬為40m.(1)求通道的寬度;(2)某公司希望用80萬元的承包金額承攬修建廣場的工程,城建部門認(rèn)為金額太高需要降價(jià),通過兩次協(xié)商,最終以51.2萬元達(dá)成一致,若兩次降價(jià)的百分率相同,求每次降價(jià)的百分率.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)二次函數(shù)與一元二次方程的關(guān)系,利用根的判別式即可得出答案.【詳解】∵函數(shù)的圖象與軸有公共點(diǎn),,解得.故選:D.【點(diǎn)睛】本題主要考查二次函數(shù)與x軸的交點(diǎn)問題,掌握根的判別式是解題的關(guān)鍵.2、C【分析】根據(jù)題意畫出相應(yīng)的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點(diǎn),由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠AOD的度數(shù),進(jìn)而確定出∠AOB的度數(shù),利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數(shù).【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點(diǎn),即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內(nèi)接四邊形AEBC對角互補(bǔ),∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.【點(diǎn)睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數(shù)值,以及銳角三角函數(shù)定義,熟練掌握垂徑定理是解本題的關(guān)鍵.3、B【分析】根據(jù)相似多邊形的性質(zhì)得到,即AF·BC=AB·AH①.然后根據(jù)IJ∥CD可得,,再結(jié)合以及矩形中的邊相等可以得出IJ=AF=DE.最后根據(jù)S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE②,結(jié)合①②可得出結(jié)論.【詳解】解:∵矩形ABCD∽矩形FAHG,,∴AF·BC=AB·AH,又IJ∥CD,∴,又DC=AB,BJ=AH,∴,∴IJ=AF=DE.S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE=AB·AH-DH·DE=(S矩形ABJH-S矩形HDEG).∴能求出△BIJ面積的條件是知道矩形ABJH和矩形HDEG的面積之差.故選:B.【點(diǎn)睛】本題考查了相似多邊形的性質(zhì),矩形的性質(zhì)等知識(shí),正確的識(shí)別圖形及運(yùn)用相關(guān)性質(zhì)是解題的關(guān)鍵.4、A【解析】由拋物線開口方向得到a<1,根據(jù)拋物線的對稱軸為直線x==-1得b<1,由拋物線與y軸的交點(diǎn)位置得到c>1,則abc>1;觀察函數(shù)圖象得到x=-1時(shí),函數(shù)有最大值;利用拋物線的對稱性可確定拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(-3,1),則當(dāng)x=1或x=-3時(shí),函數(shù)y的值等于1;觀察函數(shù)圖象得到x=2時(shí),y<1,即4a+2b+c<1.【詳解】解:∵拋物線開口向下,∴a<1,∵拋物線的對稱軸為直線x==-1,∴b=2a<1,∵拋物線與y軸的交點(diǎn)在x軸上方,∴c>1,∴abc>1,所以①正確;∵拋物線開口向下,對稱軸為直線x=-1,∴當(dāng)x=-1時(shí),函數(shù)有最大值,所以②正確;∵拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(1,1),而對稱軸為直線x=-1,∴拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(?3,1),∴當(dāng)x=1或x=-3時(shí),函數(shù)y的值都等于1,∴方程ax2+bx+c=1的解是:x1=1,x2=-3,所以③正確;∵x=2時(shí),y<1,∴4a+2b+c<1,所以④錯(cuò)誤.故選A.【點(diǎn)睛】解此題的關(guān)鍵是能正確觀察圖形和靈活運(yùn)用二次函數(shù)的性質(zhì),能根據(jù)圖象確定a、b、c的符號,并能根據(jù)圖象看出當(dāng)x取特殊值時(shí)y的符號.5、C【分析】設(shè)P(a,0),由直線AB∥y軸,則A,B兩點(diǎn)的橫坐標(biāo)都為a,而A,B分別在反比例函數(shù)圖象上,可得到A點(diǎn)坐標(biāo)為(a,-),B點(diǎn)坐標(biāo)為(a,),從而求出AB的長,然后根據(jù)三角形的面積公式計(jì)算即可.【詳解】設(shè)P(a,0),a>0,∴A和B的橫坐標(biāo)都為a,OP=a,將x=a代入反比例函數(shù)y=﹣中得:y=﹣,∴A(a,﹣);將x=a代入反比例函數(shù)y=中得:y=,∴B(a,),∴AB=AP+BP=+=,則S△ABC=AB?OP=××a=1.故選C.【點(diǎn)睛】此題考查了反比例函數(shù),以及坐標(biāo)與圖形性質(zhì),其中設(shè)出P的坐標(biāo),表示出AB的長是解本題的關(guān)鍵.6、A【分析】根據(jù)必然事件是指在一定條件下,一定發(fā)生的事件,對每一選項(xiàng)判斷即可.【詳解】解:A、3個(gè)人分成兩組,并且每組必有人,一定有2個(gè)人分在一組是必然事件,符合題意,故選A;B、拋一枚硬幣,正面朝上是隨機(jī)事件,故不符合題意,B選項(xiàng)錯(cuò)誤;C、隨意擲兩個(gè)均勻的骰子,朝上面的點(diǎn)數(shù)之和為6是隨機(jī)事件,故不符合題意,C選項(xiàng)錯(cuò)誤;D、打開電視,正在播放動(dòng)畫片是隨機(jī)事件,故不符合題意,D選項(xiàng)錯(cuò)誤;故答案選擇D.【點(diǎn)睛】本題考查的是事件的分類,事件分為必然事件,隨機(jī)事件和不可能事件,掌握概念是解題的關(guān)鍵.7、A【分析】首先根據(jù)二次函數(shù)及反比例函數(shù)的圖象確定k、b的符號,然后根據(jù)一次函數(shù)的性質(zhì)確定答案即可.【詳解】∵二次函數(shù)的圖象開口向上,對稱軸>0∴a>0,b<0,

又∵反比例函數(shù)的圖形位于二、四象限,∴-k<0,∴k>0

∴函數(shù)y=kx-b的大致圖象經(jīng)過一、二、三象限.故選:

A【點(diǎn)睛】本題考查的是利用反比例函數(shù)和二次函數(shù)的圖象確定一次函數(shù)的系數(shù),然后根據(jù)一次函數(shù)的性質(zhì)確定其大致圖象,確定一次函數(shù)的系數(shù)是解決本題的關(guān)鍵.8、C【分析】易得AG∥BC,進(jìn)而可得△AFG∽△CFB,然后根據(jù)相似三角形的性質(zhì)以及BA=BC即可判斷①;根據(jù)余角的性質(zhì)可得∠ABG=∠BCD,然后利用“角邊角”可證明△ABG≌△BCD,可得AG=BD,于是有AG=BC,由①根據(jù)相似三角形的性質(zhì)可得,進(jìn)而可得FG=FB,然后根據(jù)FE≠BE即可判斷②;根據(jù)相似三角形的性質(zhì)可得,再根據(jù)等腰直角三角形的性質(zhì)可得AC=AB,然后整理即可判斷③;過點(diǎn)F作FM⊥AB于M,如圖,根據(jù)相似三角形的性質(zhì)和三角形的面積整理即可判斷④.【詳解】解:在Rt△ABC中,∵∠ABC=90°,∴AB⊥BC,∵AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正確;∵∠ABC=90°,BG⊥CD,∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,∴∠ABG=∠BCD,又∵BA=BC,∠BAG=∠CBD=90°,∴△ABG≌和△BCD(ASA),∴AG=BD,∵點(diǎn)D是AB的中點(diǎn),∴BD=AB,∴AG=BC,∵△AFG∽△CFB,∴,∴FG=FB,∵FE≠BE,∴點(diǎn)F是GE的中點(diǎn)不成立,故②錯(cuò)誤;∵△AFG∽△CFB,∴,∴AF=AC,∵AC=AB,∴,故③正確;過點(diǎn)F作FM⊥AB于M,如圖,則FM∥CB,∴△AFM∽△ACB,∴,∵,∴,故④錯(cuò)誤.綜上所述,正確的結(jié)論有①③共2個(gè).故選:C.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)和等腰直角三角形的性質(zhì)等知識(shí),屬于??碱}型,熟練掌握全等三角形和相似三角形的判定和性質(zhì)是解題的關(guān)鍵.9、B【分析】因式分解法解方程求得x的值,再根據(jù)三角形的三邊關(guān)系判斷能否構(gòu)成三角形,最后求出周長即可.【詳解】解:∵,∴(x-2)(x-3)=0,∴x-2=0或x-3=0,解得:x=2或x=3,當(dāng)x=2時(shí),三角形的三邊2+2>3,可以構(gòu)成三角形,周長為3+2+2=7;當(dāng)x=3時(shí),三角形的三邊滿足3+2>3,可以構(gòu)成三角形,周長為3+2+3=8,故選:B.【點(diǎn)睛】本題主要考查解一元二次方程的能力和三角形三邊的關(guān)系,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點(diǎn)選擇合適、簡便的方法是解題的關(guān)鍵.10、C【詳解】解:設(shè)人行道的寬度為x米,根據(jù)題意得,(18﹣3x)(6﹣2x)=61,化簡整理得,x2﹣9x+8=1.故選C.11、B【分析】依據(jù),,即可得到;依據(jù),即可得出;過作于,依據(jù),根據(jù)相似三角形的性質(zhì)得到;依據(jù),,可得,進(jìn)而得到.【詳解】解:∵菱形中,,.∴,,∴,故①正確;∴,又∵,為中點(diǎn),,∴,即,又∵,∴∵,∴,∴,∴,故②正確;如圖,過作于,則,∴,,,∴中,,又∵,∴,故③正確;∵,,,,∴,,∴,∴,故④錯(cuò)誤;故選:B.【點(diǎn)睛】此題考查相似三角形的判定與性質(zhì)、菱形的性質(zhì)、等邊三角形的性質(zhì)的綜合運(yùn)用.解題關(guān)鍵在于掌握判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.12、A【分析】過點(diǎn)O作OD⊥AB于點(diǎn)D,根據(jù)垂徑定理可求出AD的長,再在Rt△AOD中,利用勾股定理求出OD的長即可得到答案.【詳解】解:過點(diǎn)O作OD⊥AB于點(diǎn)D,∵AB=8cm,∴AD=AB=4cm,在Rt△AOD中,OD===2(cm),∴油面深度為:5-2=1(cm)故選:A.【點(diǎn)睛】本題考查了垂徑定理和勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.二、填空題(每題4分,共24分)13、2.3【解析】AB是Rt△ABC的斜邊,這個(gè)直角三角形中,已知一邊和一銳角,滿足解直角三角形的條件,可求出AB的長.【詳解】在Rt△ABC中,∴∴即斜坡AB的長為2.3m.故答案為2.3.【點(diǎn)睛】考查解直角三角形的實(shí)際應(yīng)用,熟練掌握銳角三角函數(shù)是解題的關(guān)鍵.14、1【分析】設(shè)方程另一個(gè)根為x1,根據(jù)根與系數(shù)的關(guān)系得到-1?x1=-1,然后解一次方程即可.【詳解】設(shè)方程另一個(gè)根為x1,根據(jù)題意得-1?x1=-1,所以x1=1.故答案為1.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=-,x1x2=.15、.【詳解】解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點(diǎn),∴點(diǎn)P到直線BC的距離為1.∴△PAB的面積.故答案為:.16、12【分析】首先由題意畫出圖形,易證得△OAB是等邊三角形,又由正六邊形的邊心距利用三角函數(shù)的知識(shí)即可求得OA的長,即可得AB的長,繼而求得它的周長.【詳解】如圖,連接OA,OB,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,∵OA=OB,∴△OAB是等邊三角形,∴∠OAH=60°,∵OH⊥A,OH=,∴,∴AB=OA=2,∴它的周長是:2×6=12考點(diǎn):正多邊形和圓點(diǎn)評:此題考查了圓的內(nèi)接正多邊形的性質(zhì).此題難度不大,注意數(shù)形結(jié)合思想的應(yīng)用17、2或﹣2【解析】利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出當(dāng)y=2時(shí)x的值,結(jié)合當(dāng)a≤x≤a+2時(shí)函數(shù)有最小值2,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論.【詳解】當(dāng)y=2時(shí),有x2﹣2x+2=2,解得:x2=0,x2=2.∵當(dāng)a≤x≤a+2時(shí),函數(shù)有最小值2,∴a=2或a+2=0,∴a=2或a=﹣2,故答案為:2或﹣2.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及二次函數(shù)的最值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出當(dāng)y=2時(shí)x的值是解題的關(guān)鍵.18、3.【分析】先根據(jù)同角的余角相等證明∠ADE=∠ACD,在△ADC根據(jù)銳角三角函數(shù)表示用含有k的代數(shù)式表示出AD=4k和DC=3k,從而根據(jù)勾股定理得出AC=5k,又AC=5,從而求出DC的值即為AB.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,設(shè)AD=4k,CD=3k,則AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案為3.【點(diǎn)睛】本題考查矩形的性質(zhì)和利用銳角三角函數(shù)解直角三角形,解決此類問題時(shí)需要將已知角的三角函數(shù)、已知邊、未知邊,轉(zhuǎn)換到同一直角三角形中,然后解決問題.三、解答題(共78分)19、(1)詳見解析;(1)①詳見解析;②BP=AB.【分析】(1)根據(jù)要求畫出圖形即可;(1)①連接BD,如圖1,只要證明△ADQ≌△ABP,∠DPB=90°即可解決問題;②結(jié)論:BP=AB,如圖3中,連接AC,延長CD到N,使得DN=CD,連接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【詳解】(1)解:補(bǔ)全圖形如圖1:(1)①證明:連接BD,如圖1,∵線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到線段AQ,∴AQ=AP,∠QAP=90°,∵四邊形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在Rt△BPD中,DP1+BP1=BD1,又∵DQ=BP,BD1=1AB1,∴DP1+DQ1=1AB1.②解:結(jié)論:BP=AB.理由:如圖3中,連接AC,延長CD到N,使得DN=CD,連接AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【點(diǎn)睛】本題考查正方形的性質(zhì),旋轉(zhuǎn)變換、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸20、⑴m的最大整數(shù)值為m=1(2)x12+x22-x1x2=5【分析】一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;(3)△<0?方程沒有實(shí)數(shù)根.根據(jù)一元二次方程的根的判別式,建立關(guān)于m的不等式,求出m的取值范圍.【詳解】⑴由題意,得:△>0,即:>0解得m<2,∴m的最大整數(shù)值為m=1;(2)把m=1代入關(guān)于x的一元二次方程x2-2x+m=0得x2-2x+1=0,根據(jù)根與系數(shù)的關(guān)系:x1+x2=2,x1x2=1,∴x12+x22-x1x2=(x1+x2)2-3x1x2=(2)2-3×1=5考點(diǎn):根的判別式.21、(1);(2)見解析【分析】(1)直接根據(jù)概率公式計(jì)算即可.

(2)首先列表列出可能的情況,摸出的兩張牌面圖形既是軸對稱圖形又是中心對稱圖形的結(jié)果有2種,由概率公式得出概率;得出游戲不公平;關(guān)鍵概率相等修改即可.【詳解】解:(1)共有4張牌,正面是中心對稱圖形的情況有3種,從四張紙牌中隨機(jī)摸出一張,摸出的牌面圖形是中心對稱圖形的概率是;故答案為;(2)游戲不公平,理由如下:列表得:共有12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,摸出的兩張牌面圖形既是軸對稱圖形又是中心對稱圖形的結(jié)果有2種,即∴(兩張牌面圖形既是軸對稱圖形又是中心對稱圖形),∴游戲不公平.修改規(guī)則:若抽到的兩張牌面圖形都是中心對稱圖形(或若抽到的兩張牌面圖形都是軸對稱圖形),則小明獲勝,否則小亮獲勝.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).正確利用樹狀圖分析兩次摸牌所有可能結(jié)果是關(guān)鍵,區(qū)分中心對稱圖形是要點(diǎn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)y=-x2-2x+3,y=x+3;(2)M(-1,2).【解析】試題分析:(1)根據(jù)題意得出關(guān)于a、b、c的方程組,求得a、b、c的值,即可得出拋物線的解析式,根據(jù)拋物線的對稱性得出點(diǎn)B的坐標(biāo),再設(shè)出直線BC的解析式,把點(diǎn)B、C的坐標(biāo)代入即可得出直線BC的解析式;(2)點(diǎn)A關(guān)于對稱軸的對稱點(diǎn)為點(diǎn)B,連接BC,設(shè)直線BC與對稱軸x=-1的交點(diǎn)為M,則此時(shí)MA+MC的值最小,再求得點(diǎn)M的坐標(biāo).試題解析:(1)依題意得:,解之得:,∴拋物線解析式為y=-x2-2x+3,∵對稱軸為x=-1,且拋物線經(jīng)過A(1,0),∴B(-3,0),∴把B(-3,0)、C(0,3)分別代入直線y=mx+n,得,解得:,∴直線y=mx+n的解析式為y=x+3;(2)設(shè)直線BC與對稱軸x=-1的交點(diǎn)為M,則此時(shí)MA+MC的值最小.把x=-1代入直線y=x+3得,y=2∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論