鄭州市2021-2022學(xué)年高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第1頁
鄭州市2021-2022學(xué)年高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第2頁
鄭州市2021-2022學(xué)年高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第3頁
鄭州市2021-2022學(xué)年高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第4頁
鄭州市2021-2022學(xué)年高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第5頁
免費預(yù)覽已結(jié)束,剩余12頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022年高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數(shù)恰好為5的概率是()A. B. C. D.2.若函數(shù)有且僅有一個零點,則實數(shù)的值為()A. B. C. D.3.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.4.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對于下列說法:①越小,則國民分配越公平;②設(shè)勞倫茨曲線對應(yīng)的函數(shù)為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④5.函數(shù)的一個零點在區(qū)間內(nèi),則實數(shù)a的取值范圍是()A. B. C. D.6.已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是()A. B. C. D.7.圓心為且和軸相切的圓的方程是()A. B.C. D.8.已知整數(shù)滿足,記點的坐標(biāo)為,則點滿足的概率為()A. B. C. D.9.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)是()A. B. C. D.10.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.11.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.點為不等式組所表示的平面區(qū)域上的動點,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量=(-4,3),=(6,m),且,則m=__________.14.已知函數(shù),若,則的取值范圍是__15.的展開式中的系數(shù)為________________.16.已知實數(shù)滿足,則的最小值是______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)當(dāng)時,求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍.18.(12分)平面直角坐標(biāo)系中,曲線:.直線經(jīng)過點,且傾斜角為,以為極點,軸正半軸為極軸,建立極坐標(biāo)系.(1)寫出曲線的極坐標(biāo)方程與直線的參數(shù)方程;(2)若直線與曲線相交于,兩點,且,求實數(shù)的值.19.(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),為數(shù)列的前項和,記,證明:.20.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.21.(12分)設(shè)的內(nèi)角的對邊分別為,已知.(1)求;(2)若為銳角三角形,求的取值范圍.22.(10分)如圖,已知在三棱錐中,平面,分別為的中點,且.(1)求證:;(2)設(shè)平面與交于點,求證:為的中點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數(shù)恰好為5的概率為:故選:B【點睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運算的能力,屬于中檔題.2.D【解析】

推導(dǎo)出函數(shù)的圖象關(guān)于直線對稱,由題意得出,進(jìn)而可求得實數(shù)的值,并對的值進(jìn)行檢驗,即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對稱.若函數(shù)的零點不為,則該函數(shù)的零點必成對出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時,令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時,函數(shù)與函數(shù)的圖象有三個交點,不合乎題意;②當(dāng)時,,,當(dāng)且僅當(dāng)時,等號成立,則函數(shù)有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數(shù)的零點個數(shù)求參數(shù),考查函數(shù)圖象對稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對參數(shù)的值進(jìn)行檢驗,考查分析問題和解決問題的能力,屬于中等題.3.D【解析】

試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.4.A【解析】

對于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.5.C【解析】

顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個零點在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因為的一個零點在區(qū)間內(nèi),所以,即,解得,故選:C【點睛】本題考查零點存在性定理的應(yīng)用,屬于基礎(chǔ)題.6.A【解析】

先求出函數(shù)在處的切線方程,在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時,,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標(biāo)為.在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.7.A【解析】

求出所求圓的半徑,可得出所求圓的標(biāo)準(zhǔn)方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎(chǔ)題.8.D【解析】

列出所有圓內(nèi)的整數(shù)點共有37個,滿足條件的有7個,相除得到概率.【詳解】因為是整數(shù),所以所有滿足條件的點是位于圓(含邊界)內(nèi)的整數(shù)點,滿足條件的整數(shù)點有共37個,滿足的整數(shù)點有7個,則所求概率為.故選:.【點睛】本題考查了古典概率的計算,意在考查學(xué)生的應(yīng)用能力.9.A【解析】

直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)是.故選:A.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.10.A【解析】

由正弦定理化簡已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.11.B【解析】

分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.12.B【解析】

作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,利用的幾何意義即可得到結(jié)論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點睛】本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義結(jié)合斜率公式是解決本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.8.【解析】

利用轉(zhuǎn)化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標(biāo)運算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.14.【解析】

根據(jù)分段函數(shù)的性質(zhì),即可求出的取值范圍.【詳解】當(dāng)時,,,當(dāng)時,,所以,故的取值范圍是.故答案為:.【點睛】本題考查分段函數(shù)的性質(zhì),已知分段函數(shù)解析式求參數(shù)范圍,還涉及對數(shù)和指數(shù)的運算,屬于基礎(chǔ)題.15.【解析】

在二項展開式的通項中令的指數(shù)為,求出參數(shù)值,然后代入通項可得出結(jié)果.【詳解】的展開式的通項為,令,因此,的展開式中的系數(shù)為.故答案為:.【點睛】本題考查二項展開式中指定項系數(shù)的求解,涉及二項展開式通項的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.16.【解析】

先畫出不等式組對應(yīng)的可行域,再利用數(shù)形結(jié)合分析解答得解.【詳解】畫出不等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當(dāng)直線經(jīng)過點時,直線的縱截距最小,目標(biāo)函數(shù)取得最小值,且.故答案為:-8【點睛】本題主要考查線性規(guī)劃問題,意在考查學(xué)生對這些知識的理解掌握水平和數(shù)形結(jié)合分析能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)【解析】

(Ⅰ)把代入,可得,令,求出其在上的值域,利用對數(shù)函數(shù)的單調(diào)性即可求解.(Ⅱ)根據(jù)對數(shù)函數(shù)的單調(diào)性可得在上單調(diào)遞增,再利用二次函數(shù)的圖像與性質(zhì)可得解不等式組即可求解.【詳解】(Ⅰ)當(dāng)時,,此時函數(shù)的定義域為.因為函數(shù)的最小值為.最大值為,故函數(shù)在上的值域為;(Ⅱ)因為函數(shù)在上單調(diào)遞減,故在上單調(diào)遞增,則解得,綜上所述,實數(shù)的取值范圍.【點睛】本題主要考查了利用對數(shù)函數(shù)的單調(diào)性求值域、利用對數(shù)型函數(shù)的單調(diào)區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖像與性質(zhì),屬于中檔題.18.(Ⅰ)(t為參數(shù));(Ⅱ)或或.【解析】

試題分析:本題主要考查極坐標(biāo)方程、參數(shù)方程與直角方程的相互轉(zhuǎn)化、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,用,化簡表達(dá)式,得到曲線的極坐標(biāo)方程,由已知點和傾斜角得到直線的參數(shù)方程;第二問,直線方程與曲線方程聯(lián)立,消參,解出的值.試題解析:(1)即,.(2),符合題意考點:本題主要考查:1.極坐標(biāo)方程,參數(shù)方程與直角方程的相互轉(zhuǎn)化;2.直線與拋物線的位置關(guān)系.19.(Ⅰ),;(Ⅱ)見解析【解析】

(Ⅰ)由,且成等差數(shù)列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項相消法求,即可得到本題答案.【詳解】(Ⅰ)因為數(shù)列是各項均為正數(shù)的等比數(shù)列,,可設(shè)公比為q,,又成等差數(shù)列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因為,所以即.【點睛】本題主要考查等差等比數(shù)列的綜合應(yīng)用,以及用裂項相消法求和并證明不等式,考查學(xué)生的運算求解能力和推理證明能力.20.(1);(2).【解析】

(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函數(shù)值域的方法即可得到答案.【詳解】(1)因為,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因為,所以.(2)由(1)得,在中,,所以.因為,所以,所以當(dāng),即時,有最大值1,所以的最大值為.【點睛】本題考查正余弦定理解三角形,涉及到兩角差的正弦公式、輔助角公式、向量數(shù)量積的坐標(biāo)運算,是一道容易題.21.(1)(2)【解析】

(1)利用正

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論