廣東省廣州市番禺區(qū)2023學(xué)年高考考前提分?jǐn)?shù)學(xué)仿真卷(含解析)_第1頁(yè)
廣東省廣州市番禺區(qū)2023學(xué)年高考考前提分?jǐn)?shù)學(xué)仿真卷(含解析)_第2頁(yè)
廣東省廣州市番禺區(qū)2023學(xué)年高考考前提分?jǐn)?shù)學(xué)仿真卷(含解析)_第3頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂(lè)”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.2402.下列圖形中,不是三棱柱展開(kāi)圖的是()A. B. C. D.3.下圖是我國(guó)第24~30屆奧運(yùn)獎(jiǎng)牌數(shù)的回眸和中國(guó)代表團(tuán)獎(jiǎng)牌總數(shù)統(tǒng)計(jì)圖,根據(jù)表和統(tǒng)計(jì)圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎(jiǎng)牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)一直保持上升趨勢(shì)B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實(shí)際意義C.第30屆與第29屆北京奧運(yùn)會(huì)相比,奧運(yùn)金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會(huì)中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)的中位數(shù)是54.54.下列函數(shù)中,圖象關(guān)于軸對(duì)稱的為()A. B.,C. D.5.點(diǎn)為的三條中線的交點(diǎn),且,,則的值為()A. B. C. D.6.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.7.已知六棱錐各頂點(diǎn)都在同一個(gè)球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.8.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.9.在正方體中,點(diǎn)、分別為、的中點(diǎn),過(guò)點(diǎn)作平面使平面,平面若直線平面,則的值為()A. B. C. D.10.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,若點(diǎn)在角的終邊上,則()A. B. C. D.11.學(xué)業(yè)水平測(cè)試成績(jī)按照考生原始成績(jī)從高到低分為、、、、五個(gè)等級(jí).某班共有名學(xué)生且全部選考物理、化學(xué)兩科,這兩科的學(xué)業(yè)水平測(cè)試成績(jī)?nèi)鐖D所示.該班學(xué)生中,這兩科等級(jí)均為的學(xué)生有人,這兩科中僅有一科等級(jí)為的學(xué)生,其另外一科等級(jí)為,則該班()A.物理化學(xué)等級(jí)都是的學(xué)生至多有人B.物理化學(xué)等級(jí)都是的學(xué)生至少有人C.這兩科只有一科等級(jí)為且最高等級(jí)為的學(xué)生至多有人D.這兩科只有一科等級(jí)為且最高等級(jí)為的學(xué)生至少有人12.如圖網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體的所有棱中最長(zhǎng)棱的長(zhǎng)度為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)全集,,,則______.14.已知函數(shù)的最大值為3,的圖象與y軸的交點(diǎn)坐標(biāo)為,其相鄰兩條對(duì)稱軸間的距離為2,則15.如圖,在復(fù)平面內(nèi),復(fù)數(shù),對(duì)應(yīng)的向量分別是,,則_______.16.已知為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上移動(dòng)時(shí),的內(nèi)心的軌跡方程為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)記數(shù)列的前n項(xiàng)和為,,求數(shù)列的前n項(xiàng)和.18.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大?。唬?)已知外接圓半徑,求的周長(zhǎng).19.(12分)已知函數(shù)(1)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.20.(12分)已知關(guān)于的不等式解集為().(1)求正數(shù)的值;(2)設(shè),且,求證:.21.(12分)如圖,在直三棱柱中,,點(diǎn)P,Q分別為,的中點(diǎn).求證:(1)PQ平面;(2)平面.22.(10分)[2018·石家莊一檢]已知函數(shù).(1)若,求函數(shù)的圖像在點(diǎn)處的切線方程;(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,求證:.

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【答案解析】

利用間接法求解,首先對(duì)6門課程全排列,減去“樂(lè)”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂(lè)”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【題目詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂(lè)”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門課程相鄰時(shí)有(種),當(dāng)“樂(lè)”排在第一節(jié),且“射”和“御”兩門課程相鄰時(shí)有(種),則滿足“樂(lè)”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:.【答案點(diǎn)睛】本題考查排列、組合的應(yīng)用,注意“樂(lè)”的排列對(duì)“射”和“御”兩門課程相鄰的影響,屬于中檔題.2、C【答案解析】

根據(jù)三棱柱的展開(kāi)圖的可能情況選出選項(xiàng).【題目詳解】由圖可知,ABD選項(xiàng)可以圍成三棱柱,C選項(xiàng)不是三棱柱展開(kāi)圖.故選:C【答案點(diǎn)睛】本小題主要考查三棱柱展開(kāi)圖的判斷,屬于基礎(chǔ)題.3、B【答案解析】

根據(jù)表格和折線統(tǒng)計(jì)圖逐一判斷即可.【題目詳解】A.中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)不是一直保持上升趨勢(shì),29屆最多,錯(cuò)誤;B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運(yùn)會(huì)相比,奧運(yùn)金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯(cuò)誤;D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會(huì)中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【答案點(diǎn)睛】此題考查統(tǒng)計(jì)圖,關(guān)鍵點(diǎn)讀懂折線圖,屬于簡(jiǎn)單題目.4、D【答案解析】

圖象關(guān)于軸對(duì)稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對(duì)選項(xiàng)進(jìn)行判斷可解.【題目詳解】圖象關(guān)于軸對(duì)稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域?yàn)?,不關(guān)于原點(diǎn)對(duì)稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【答案點(diǎn)睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對(duì)于函數(shù)的定義域內(nèi)任意一個(gè)都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關(guān)于原點(diǎn)(軸)對(duì)稱.5、B【答案解析】

可畫(huà)出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進(jìn)行數(shù)量積的運(yùn)算即可求出.【題目詳解】如圖:點(diǎn)為的三條中線的交點(diǎn),由可得:,又因,,.故選:B【答案點(diǎn)睛】本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運(yùn)算及向量的數(shù)量積的運(yùn)算,考查運(yùn)算求解能力,屬于中檔題.6、A【答案解析】

對(duì)復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計(jì)算得到,從而得到虛部為2.【題目詳解】因?yàn)椋詚的虛部為2.【答案點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計(jì)算過(guò)程要注意.7、D【答案解析】

由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【題目詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因?yàn)?,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【答案點(diǎn)睛】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計(jì)算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于中檔試題.8、A【答案解析】

作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【題目詳解】作于,于.因?yàn)槠矫嫫矫?平面.故,故平面.故二面角為.又直線與平面所成角為,因?yàn)?故.故,當(dāng)且僅當(dāng)重合時(shí)取等號(hào).又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當(dāng)且僅當(dāng)平面時(shí)取等號(hào).故.故選:A【答案點(diǎn)睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時(shí)運(yùn)用線面角的最小性進(jìn)行判定.屬于中檔題.9、B【答案解析】

作出圖形,設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),推導(dǎo)出,由線面平行的性質(zhì)定理可得出,可得出點(diǎn)為的中點(diǎn),同理可得出點(diǎn)為的中點(diǎn),結(jié)合中位線的性質(zhì)可求得的值.【題目詳解】如下圖所示:設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),四邊形為正方形,、分別為、的中點(diǎn),則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時(shí),平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點(diǎn),同理可證為的中點(diǎn),,,因此,.故選:B.【答案點(diǎn)睛】本題考查線段長(zhǎng)度比值的計(jì)算,涉及線面平行性質(zhì)的應(yīng)用,解答的關(guān)鍵就是找出平面與正方體各棱的交點(diǎn)位置,考查推理能力與計(jì)算能力,屬于中等題.10、D【答案解析】

由題知,又,代入計(jì)算可得.【題目詳解】由題知,又.故選:D【答案點(diǎn)睛】本題主要考查了三角函數(shù)的定義,誘導(dǎo)公式,二倍角公式的應(yīng)用求值.11、D【答案解析】

根據(jù)題意分別計(jì)算出物理等級(jí)為,化學(xué)等級(jí)為的學(xué)生人數(shù)以及物理等級(jí)為,化學(xué)等級(jí)為的學(xué)生人數(shù),結(jié)合表格中的數(shù)據(jù)進(jìn)行分析,可得出合適的選項(xiàng).【題目詳解】根據(jù)題意可知,名學(xué)生減去名全和一科為另一科為的學(xué)生人(其中物理化學(xué)的有人,物理化學(xué)的有人),表格變?yōu)椋何锢砘瘜W(xué)對(duì)于A選項(xiàng),物理化學(xué)等級(jí)都是的學(xué)生至多有人,A選項(xiàng)錯(cuò)誤;對(duì)于B選項(xiàng),當(dāng)物理和,化學(xué)都是時(shí),或化學(xué)和,物理都是時(shí),物理、化學(xué)都是的人數(shù)最少,至少為(人),B選項(xiàng)錯(cuò)誤;對(duì)于C選項(xiàng),在表格中,除去物理化學(xué)都是的學(xué)生,剩下的都是一科為且最高等級(jí)為的學(xué)生,因?yàn)槎际堑膶W(xué)生最少人,所以一科為且最高等級(jí)為的學(xué)生最多為(人),C選項(xiàng)錯(cuò)誤;對(duì)于D選項(xiàng),物理化學(xué)都是的最多人,所以兩科只有一科等級(jí)為且最高等級(jí)為的學(xué)生最少(人),D選項(xiàng)正確.故選:D.【答案點(diǎn)睛】本題考查合情推理,考查推理能力,屬于中等題.12、C【答案解析】

利用正方體將三視圖還原,觀察可得最長(zhǎng)棱為AD,算出長(zhǎng)度.【題目詳解】幾何體的直觀圖如圖所示,易得最長(zhǎng)的棱長(zhǎng)為故選:C.【答案點(diǎn)睛】本題考查了三視圖還原幾何體的問(wèn)題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】

先求出集合,,然后根據(jù)交集、補(bǔ)集的定義求解即可.【題目詳解】解:,或;∴;∴.故答案為:.【答案點(diǎn)睛】本題主要考查集合的交集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.14、【答案解析】,由題意,得,解得,則的周期為4,且,所以.考點(diǎn):三角函數(shù)的圖像與性質(zhì).15、【答案解析】試題分析:由坐標(biāo)系可知考點(diǎn):復(fù)數(shù)運(yùn)算16、【答案解析】

考查更為一般的問(wèn)題:設(shè)P為橢圓C:上的動(dòng)點(diǎn),為橢圓的兩個(gè)焦點(diǎn),為△PF1F2的內(nèi)心,求點(diǎn)I的軌跡方程.解法一:如圖,設(shè)內(nèi)切圓I與F1F2的切點(diǎn)為H,半徑為r,且F1H=y,F(xiàn)2H=z,PF1=x+y,PF2=x+z,,則.直線IF1與IF2的斜率之積:,而根據(jù)海倫公式,有△PF1F2的面積為因此有.再根據(jù)橢圓的斜率積定義,可得I點(diǎn)的軌跡是以F1F2為長(zhǎng)軸,離心率e滿足的橢圓,其標(biāo)準(zhǔn)方程為.解法二:令,則.三角形PF1F2的面積:,其中r為內(nèi)切圓的半徑,解得.另一方面,由內(nèi)切圓的性質(zhì)及焦半徑公式得:從而有.消去θ得到點(diǎn)I的軌跡方程為:.本題中:,代入上式可得軌跡方程為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【答案解析】

(1)因?yàn)?,所以,所以,所以?shù)列是等差數(shù)列,設(shè)數(shù)列的公差為,由可得,因?yàn)槌傻缺葦?shù)列,所以,所以,所以,因?yàn)椋?,解得(舍去)或,所以,所以.?)由(1)知,,所以,所以.18、(1)(2)3+3【答案解析】

(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡(jiǎn)整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長(zhǎng).【題目詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長(zhǎng)a+b+c=3+3.【答案點(diǎn)睛】本題考查三角函數(shù)恒等變換的應(yīng)用,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.19、(1);(2).【答案解析】

(1)求導(dǎo)得到,討論和兩種情況,計(jì)算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計(jì)算得到答案.(2)計(jì)算得到,討論,兩種情況,分別計(jì)算單調(diào)性得到函數(shù)最值,得到答案.【題目詳解】(1),①當(dāng)時(shí)恒成立,所以單調(diào)遞增,因?yàn)椋杂形ㄒ涣泓c(diǎn),即符合題意;②當(dāng)時(shí),令,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)。(i)當(dāng)即,所以符合題意,(ii)當(dāng)即時(shí),因?yàn)椋蚀嬖?所以不符題意(iii)當(dāng)時(shí),因?yàn)?,設(shè),所以,單調(diào)遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。①當(dāng)時(shí),恒成立,所以單調(diào)遞增,所以,即符合題意;②當(dāng)時(shí),恒成立,所以單調(diào)遞增,又因?yàn)椋源嬖?,使得,且?dāng)時(shí),。即在上單調(diào)遞減,所以,不符題意。綜上,的取值范圍為.【答案點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問(wèn)題,恒成立問(wèn)題,意在考查學(xué)生的分類討論能力和綜合應(yīng)用能力.20、(1)1;(2)證明見(jiàn)解析.【答案解析】

(1)將不等式化為,求解得出,根據(jù)解集確定正數(shù)的值;(2)利用基本不等式以及不等式的性質(zhì),得出,,,三式相加,即可得證.【題目詳解】(1)解:不等式,即不等式∴,而,于是依題意得(2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論