2023學(xué)年重慶鐵路中學(xué)高考沖刺數(shù)學(xué)模擬試題(含解析)_第1頁
2023學(xué)年重慶鐵路中學(xué)高考沖刺數(shù)學(xué)模擬試題(含解析)_第2頁
2023學(xué)年重慶鐵路中學(xué)高考沖刺數(shù)學(xué)模擬試題(含解析)_第3頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知非零向量,滿足,,則與的夾角為()A. B. C. D.2.隨著人民生活水平的提高,對城市空氣質(zhì)量的關(guān)注度也逐步增大,下圖是某城市月至月的空氣質(zhì)量檢測情況,圖中一、二、三、四級是空氣質(zhì)量等級,一級空氣質(zhì)量最好,一級和二級都是質(zhì)量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數(shù)超過天的月份有個(gè)B.第二季度與第一季度相比,空氣達(dá)標(biāo)天數(shù)的比重下降了C.8月是空氣質(zhì)量最好的一個(gè)月D.6月份的空氣質(zhì)量最差.3.棱長為2的正方體內(nèi)有一個(gè)內(nèi)切球,過正方體中兩條異面直線,的中點(diǎn)作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.14.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則()A.B.C.D.5.百年雙中的校訓(xùn)是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運(yùn)動會中有這樣的一個(gè)小游戲.袋子中有大小、形狀完全相同的四個(gè)小球,分別寫有“仁”、“智”、“雅”、“和”四個(gè)字,有放回地從中任意摸出一個(gè)小球,直到“仁”、“智”兩個(gè)字都摸到就停止摸球.小明同學(xué)用隨機(jī)模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機(jī)產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機(jī)數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下20組隨機(jī)數(shù):141432341342234142243331112322342241244431233214344142134412由此可以估計(jì),恰好第三次就停止摸球的概率為()A. B. C. D.6.已知,則下列不等式正確的是()A. B.C. D.7.已知等差數(shù)列的公差不為零,且,,構(gòu)成新的等差數(shù)列,為的前項(xiàng)和,若存在使得,則()A.10 B.11 C.12 D.138.中國古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅督造的一種標(biāo)準(zhǔn)量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當(dāng)該量器口密閉時(shí)其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.49.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則10.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.11.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設(shè)小王和外賣小哥都在12:00~12:10之間隨機(jī)到達(dá)小王所居住的樓下,則小王在樓下等候外賣小哥的時(shí)間不超過5分鐘的概率是()A. B. C. D.12.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),,則,,的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等邊的邊長為2,則在方向上的投影為________.14.已知數(shù)列的前項(xiàng)和且,設(shè),則的值等于_______________.15.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是______.16.已知平面向量與的夾角為,,,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對任意成立,求實(shí)數(shù)的取值范圍.18.(12分)某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個(gè)二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.其中每一級過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購買濾芯,則一級濾芯每個(gè)160元,二級濾芯每個(gè)80元.若客戶在使用過程中單獨(dú)購買濾芯則一級濾芯每個(gè)400元,二級濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級過濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級過濾器更換的濾芯個(gè)數(shù)制成的條形圖.表1:一級濾芯更換頻數(shù)分布表一級濾芯更換的個(gè)數(shù)89頻數(shù)6040圖2:二級濾芯更換頻數(shù)條形圖以100個(gè)一級過濾器更換濾芯的頻率代替1個(gè)一級過濾器更換濾芯發(fā)生的概率,以200個(gè)二級過濾器更換濾芯的頻率代替1個(gè)二級過濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購買的一級濾芯和二級濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.19.(12分)的內(nèi)角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點(diǎn)是線段的中點(diǎn),,求的面積.20.(12分)已知拋物線的焦點(diǎn)為,直線交于兩點(diǎn)(異于坐標(biāo)原點(diǎn)O).(1)若直線過點(diǎn),,求的方程;(2)當(dāng)時(shí),判斷直線是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),說明理由.21.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對,不等式恒成立,求的取值范圍.22.(10分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.

2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【答案解析】

由平面向量垂直的數(shù)量積關(guān)系化簡,即可由平面向量數(shù)量積定義求得與的夾角.【題目詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【答案點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.2、D【答案解析】由圖表可知月空氣質(zhì)量合格天氣只有天,月份的空氣質(zhì)量最差.故本題答案選.3、C【答案解析】

連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【題目詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【答案點(diǎn)睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.4、D【答案解析】

如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【題目詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【答案點(diǎn)睛】本題考查了三視圖,元素和集合的關(guān)系,意在考查學(xué)生的空間想象能力和計(jì)算能力.5、A【答案解析】

由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數(shù)比20即可得解.【題目詳解】由題意可知當(dāng)1,2同時(shí)出現(xiàn)時(shí)即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【答案點(diǎn)睛】本題考查了簡單隨機(jī)抽樣中隨機(jī)數(shù)的應(yīng)用和古典概型概率的計(jì)算,屬于基礎(chǔ)題.6、D【答案解析】

利用特殊值代入法,作差法,排除不符合條件的選項(xiàng),得到符合條件的選項(xiàng).【題目詳解】已知,賦值法討論的情況:(1)當(dāng)時(shí),令,,則,,排除B、C選項(xiàng);(2)當(dāng)時(shí),令,,則,排除A選項(xiàng).故選:D.【答案點(diǎn)睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項(xiàng),得到符合條件的選項(xiàng),是一種簡單有效的方法,屬于中等題.7、D【答案解析】

利用等差數(shù)列的通項(xiàng)公式可得,再利用等差數(shù)列的前項(xiàng)和公式即可求解.【題目詳解】由,,構(gòu)成等差數(shù)列可得即又解得:又所以時(shí),.故選:D【答案點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、等差數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.8、D【答案解析】

根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【題目詳解】由圖可知,該幾何體是由一個(gè)長寬高分別為和一個(gè)底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【答案點(diǎn)睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎(chǔ)題.9、C【答案解析】

在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【題目詳解】設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則:在A中,若,,則與相交或平行,故A錯(cuò)誤;在B中,若,,則或,故B錯(cuò)誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯(cuò)誤.故選C.【答案點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,是中檔題.10、C【答案解析】根據(jù)命題的否定,可以寫出:,所以選C.11、C【答案解析】

設(shè)出兩人到達(dá)小王的時(shí)間,根據(jù)題意列出不等式組,利用幾何概型計(jì)算公式進(jìn)行求解即可.【題目詳解】設(shè)小王和外賣小哥到達(dá)小王所居住的樓下的時(shí)間分別為,以12:00點(diǎn)為開始算起,則有,在平面直角坐標(biāo)系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時(shí)間不超過5分鐘的概率為:.故選:C【答案點(diǎn)睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學(xué)運(yùn)算能力.12、C【答案解析】

根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項(xiàng).【題目詳解】依題意得,,當(dāng)時(shí),,因?yàn)椋栽谏蠁握{(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,,即,故選:C.【答案點(diǎn)睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】

建立直角坐標(biāo)系,結(jié)合向量的坐標(biāo)運(yùn)算求解在方向上的投影即可.【題目詳解】建立如圖所示的平面直角坐標(biāo)系,由題意可知:,,,則:,,且,,據(jù)此可知在方向上的投影為.【答案點(diǎn)睛】本題主要考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,向量投影的定義與計(jì)算等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.14、7【答案解析】

根據(jù)題意,當(dāng)時(shí),,可得,進(jìn)而得數(shù)列為等比數(shù)列,再計(jì)算可得,進(jìn)而可得結(jié)論.【題目詳解】由題意,當(dāng)時(shí),,又,解得,當(dāng)時(shí),由,所以,,即,故數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,故,又,,所以,.故答案為:.【答案點(diǎn)睛】本題考查了數(shù)列遞推關(guān)系、函數(shù)求值,考查了推理能力與計(jì)算能力,計(jì)算得是解決本題的關(guān)鍵,屬于中檔題.15、1【答案解析】

該程序的功能為利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.【題目詳解】模擬程序的運(yùn)行,可得:,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,此時(shí)滿足條件,退出循環(huán),輸出的值為1.故答案為:1.【答案點(diǎn)睛】本題考查程序框圖的應(yīng)用問題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過程,以便得出正確的結(jié)論,屬于基礎(chǔ)題.16、【答案解析】

根據(jù)已知求出,利用向量的運(yùn)算律,求出即可.【題目詳解】由可得,則,所以.故答案為:【答案點(diǎn)睛】本題考查向量的模、向量的數(shù)量積運(yùn)算,考查計(jì)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【答案解析】

(1)把代入,利用零點(diǎn)分段討論法求解;(2)對任意成立轉(zhuǎn)化為求的最小值可得.【題目詳解】解:(1)當(dāng)時(shí),不等式可化為.討論:①當(dāng)時(shí),,所以,所以;②當(dāng)時(shí),,所以,所以;③當(dāng)時(shí),,所以,所以.綜上,當(dāng)時(shí),不等式的解集為.(2)因?yàn)?,所?又因?yàn)?,對任意成立,所以,所以?故實(shí)數(shù)的取值范圍為.【答案點(diǎn)睛】本題主要考查含有絕對值不等式的解法及恒成立問題,恒成立問題一般是轉(zhuǎn)化為最值問題求解,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算的核心素養(yǎng).18、(1)0.024;(2)分布列見解析,;(3)【答案解析】

(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級過濾器需要更換8個(gè)濾芯,兩個(gè)二級過濾器均需要更換4個(gè)濾芯,而由一級濾芯更換頻數(shù)分布表和二級濾芯更換頻數(shù)條形圖可知,一級過濾器需要更換8個(gè)濾芯的概率為0.6,二級過濾器需要更換4個(gè)濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級濾芯更換頻數(shù)條形圖可知,一個(gè)二級過濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學(xué)期望;(3)由,且,可知若,則,或若,則,再分別計(jì)算兩種情況下的所需總費(fèi)用的期望值比較大小即可.【題目詳解】(1)由題意知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級過濾器需要更換8個(gè)濾芯,兩個(gè)二級過濾器均需要更換4個(gè)濾芯,設(shè)“一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16”為事件,因?yàn)橐粋€(gè)一級過濾器需要更換8個(gè)濾芯的概率為0.6,二級過濾器需要更換4個(gè)濾芯的概率為0.2,所以.(2)由柱狀圖知,一個(gè)二級過濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個(gè)).或用分?jǐn)?shù)表示也可以為89101112(個(gè)).(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用(單位:元)因?yàn)椋遥?°若,則,(元);2°若,則,(元).因?yàn)?,故選擇方案:.解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內(nèi)購買一級濾芯和二級濾芯所需費(fèi)用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統(tǒng)在使用期內(nèi)購買的各級濾芯所需總費(fèi)用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因?yàn)樗赃x擇方案:.【答案點(diǎn)睛】此題考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法及應(yīng)用,考查古典概型,考查運(yùn)算求解能力,屬于中檔題.19、(1)(2)【答案解析】

(1)利用正弦定理的邊化角公式,結(jié)合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡得出,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論