關(guān)于二次根式教案四篇_第1頁
關(guān)于二次根式教案四篇_第2頁
關(guān)于二次根式教案四篇_第3頁
關(guān)于二次根式教案四篇_第4頁
關(guān)于二次根式教案四篇_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第關(guān)于二次根式教案四篇

二次根式教案篇1

活動1、提出問題

一個運(yùn)動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運(yùn)動場的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

問題:10+20是什么運(yùn)算?

活動2、探究活動

下列3個小題怎樣計算?

問題:1)-還能繼續(xù)往下合并嗎?

2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進(jìn)行合并。

活動3

練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

創(chuàng)設(shè)問題情景,引起學(xué)生思考。

學(xué)生回答:這個運(yùn)動場要準(zhǔn)備(10+20)平方米的草皮。

教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運(yùn)算。

我們可以利用已學(xué)知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

教師引導(dǎo)驗證:

①設(shè)=,類比合并同類項或面積法;

②學(xué)生思考,得出先化簡,再合并的解題思路

③先化簡,再合并

學(xué)生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。

教師巡視、指導(dǎo),學(xué)生完成、交流,師生評價。

提醒學(xué)生注意先化簡成最簡二次根式后再判斷。二次根式教案篇2

【學(xué)習(xí)目標(biāo)】

1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。

2、過程與方法:進(jìn)一步體會分類討論的數(shù)學(xué)思想。

3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。

【學(xué)習(xí)重難點】

1、重點:準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡單的計算。

2、難點:準(zhǔn)確理解二次根式的雙重非負(fù)性。

【學(xué)習(xí)內(nèi)容】課本第2—3頁

【學(xué)習(xí)流程】

一、課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)

學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

二、課堂教學(xué)

(一)合作學(xué)習(xí)階段。

教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時的引導(dǎo)、點撥,對普遍存在的問題做好記錄。

(二)集體講授階段。(15分鐘左右)

1.各小組推選代表依次對課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

2.教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。

3.各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。

(三)當(dāng)堂檢測階段

為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進(jìn)行及時的鞏固,對學(xué)生進(jìn)行當(dāng)堂檢測,測試完試卷上交。

(注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

三、課后作業(yè)(課后作業(yè)見附件2)

教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

四、板書設(shè)計

課題:二次根式(1)

二次根式概念例題例題

二次根式性質(zhì)

反思:二次根式教案篇3

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

二次根式的除法法則及其逆用,最簡二次根式的概念。

2.內(nèi)容解析

二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運(yùn)算的基礎(chǔ).

基于以上分析,確定本節(jié)課的教學(xué)重點:二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.

二、目標(biāo)和目標(biāo)解析

1.教學(xué)目標(biāo)

(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

(2)會進(jìn)行簡單的二次根式的除法運(yùn)算;

(3)理解最簡二次根式的概念.

2.目標(biāo)解析

(1)學(xué)生能通過運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進(jìn)行運(yùn)算.

(3)通過觀察二次根式的運(yùn)算結(jié)果,理解最簡二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡二次根式.

三、教學(xué)問題診斷分析

本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行.二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算.教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計運(yùn)算結(jié)果,明確運(yùn)算方向.

本節(jié)課的教學(xué)難點為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.

四、教學(xué)過程設(shè)計

1.復(fù)習(xí)提問,探究規(guī)律

問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

師生活動學(xué)生回答。

【設(shè)計意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.

五、目標(biāo)檢測設(shè)計二次根式教案篇4

教學(xué)目標(biāo)

1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練地化簡含二次根式的式子;

2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.

教學(xué)重點和難點

重點:含二次根式的式子的混合運(yùn)算.

難點:綜合運(yùn)用二次根式的性質(zhì)及運(yùn)算法則化簡和計算含二次根式的式子.

教學(xué)過程設(shè)計

一、復(fù)習(xí)

1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各式成立的條件.

指出:二次根式的這些基本性質(zhì)都是在一定條件下才成立的,主要應(yīng)用于化簡二次根式.

2.二次根式的乘法及除法的法則是什么?用式子表示出來.

指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

計算結(jié)果要把分母有理化.

3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

4.在含有二次根式的式子的化簡及求值等問題中,常運(yùn)用三個可逆的式子:

二、例題

例1_取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

分析:

(1)題是兩個二次根式的和,_的取值必須使兩個二次根式都有意義;

(3)題是兩個二次根式的'和,_的取值必須使兩個二次根式都有意義;

(4)題的分子是二次根式,分母是含_的單項式,因此_的取值必須使二次根式有意義,同時使分母的值不等于零.

_-2且_0.

解因為n2-90,9-n20,且n-30,所以n2=9且n3,所以

例3

分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3-a0和1-a>0.

解因為1-a>0,3-a0,所以

a<1,|a-2|=2-a.

(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

分析:先把第二個式子化簡,再把兩個式子進(jìn)行通分,然后進(jìn)行計算.

注意:

所以在化簡過程中,

例6

分析:如果把兩個式子通分,或把每一個式子的分母有理化再進(jìn)行計算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹喗荩?/p>

a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

三、課堂練習(xí)

1.選擇題:

A.a(chǎn)2B.a(chǎn)2

C.a(chǎn)2D.a(chǎn)<2

A._+2B.-_-2

C.-_+2D._-2

A.2_B.2a

C.-2_D.-2a

2.填空題:

4.計算:

四、小結(jié)

1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.

2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論