版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023學年高考數(shù)學模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則()A. B. C. D.2.已知復數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.33.已知全集為,集合,則()A. B. C. D.4.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.25.要得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向左平移個單位 B.向左平移個單位C.向右平移個單位 D.向右平移個單位6.函數(shù)f(x)=2x-3A.[32C.[327.如圖,在等腰梯形中,,,,為的中點,將與分別沿、向上折起,使、重合為點,則三棱錐的外接球的體積是()A. B.C. D.8.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.259.若(),,則()A.0或2 B.0 C.1或2 D.110.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.111.已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為()A. B.2 C.4 D.12.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知集合U={1,3,5,9},A={1,3,9},B={1,9},則?U(A∪B)=________.14.已知雙曲線的兩條漸近線方程為,若頂點到漸近線的距離為1,則雙曲線方程為.15.已知實數(shù)滿約束條件,則的最大值為___________.16.在中,已知,則的最小值是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.18.(12分)已知橢圓,上頂點為,離心率為,直線交軸于點,交橢圓于,兩點,直線,分別交軸于點,.(Ⅰ)求橢圓的方程;(Ⅱ)求證:為定值.19.(12分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當?shù)拿娣e取得最大值時,求AD的長.21.(12分)已知橢圓:的離心率為,直線:與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.為左頂點,過點的直線交橢圓于,兩點,直線,分別交直線于,兩點.(1)求橢圓的方程;(2)以線段為直徑的圓是否過定點?若是,寫出所有定點的坐標;若不是,請說明理由.22.(10分)在平面直角坐標系xOy中,以O(shè)為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點.(1)寫出曲線C的直角坐標方程和直線l的普通方程;(2)若點P的極坐標為,,求的值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【答案解析】
由已知可得,根據(jù)二倍角公式即可求解.【題目詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則,.故選:A.【答案點睛】本題考查三角函數(shù)定義、二倍角公式,考查計算求解能力,屬于基礎(chǔ)題.2、A【答案解析】,故,故選A.3、D【答案解析】
對于集合,求得函數(shù)的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【題目詳解】,,.故選:D【答案點睛】本題考查集合的補集、交集運算,考查具體函數(shù)的定義域,考查解一元二次不等式.4、A【答案解析】
設(shè),用表示出,求出的值即可得出答案.【題目詳解】設(shè)由,,.故選:A【答案點睛】本題考查了向量加法、減法以及數(shù)乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.5、A【答案解析】
運用輔助角公式將兩個函數(shù)公式進行變形得以及,按四個選項分別對變形,整理后與對比,從而可選出正確答案.【題目詳解】解:.對于A:可得.故選:A.【答案點睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯點有兩個,一個是混淆了已知函數(shù)和目標函數(shù);二是在平移時,忘記乘了自變量前的系數(shù).6、A【答案解析】
根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【題目詳解】因為函數(shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【答案點睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構(gòu)造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構(gòu)成的不等式(組)求解;(3)若已知函數(shù)fx的定義域為a,b,則函數(shù)fgx7、A【答案解析】
由題意等腰梯形中的三個三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【題目詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長為1的正四面體,設(shè)是的中心,則平面,,,外接球球心必在高上,設(shè)外接球半徑為,即,∴,解得,球體積為.故選:A.【答案點睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.8、D【答案解析】
由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項可求得首項,即可求出前n項和,從而得到最值.【題目詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設(shè)首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【答案點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.9、A【答案解析】
利用復數(shù)的模的運算列方程,解方程求得的值.【題目詳解】由于(),,所以,解得或.故選:A【答案點睛】本小題主要考查復數(shù)模的運算,屬于基礎(chǔ)題.10、A【答案解析】
根據(jù)等差數(shù)列和等比數(shù)列公式直接計算得到答案.【題目詳解】由成等比數(shù)列得,即,已知,解得.故選:.【答案點睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計算,意在考查學生的計算能力.11、C【答案解析】
設(shè),根據(jù)導數(shù)的幾何意義,求出切線斜率,進而得到切線方程,將點坐標代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【題目詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【答案點睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點所在直線求解是解題的關(guān)鍵,屬于中檔題.12、D【答案解析】
圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【題目詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.【答案點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關(guān)系,考查運算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、{5}【答案解析】易得A∪B=A={1,3,9},則?U(A∪B)={5}.14、【答案解析】由已知,即,取雙曲線頂點及漸近線,則頂點到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.15、8【答案解析】
畫出可行域和目標函數(shù),根據(jù)平移計算得到答案.【題目詳解】根據(jù)約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數(shù)表示直線在軸上的截距,由圖可知當經(jīng)過點時截距最大,故的最大值為8.故答案為:.【答案點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.16、【答案解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結(jié)合余弦定理整理為,再由cosC的余弦定理得到a,b的關(guān)系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當a=b時取到等號,故cosC的最小值為.點睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運用,能正確轉(zhuǎn)化是解題關(guān)鍵.屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的長為4(2)【答案解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系,設(shè),根據(jù)向量垂直關(guān)系計算得到答案.(2)計算平面的法向量為,為平面的一個法向量,再計算向量夾角得到答案.【題目詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系.設(shè),則,所以.,因為,所以,即,解得,所以的長為4.(2)因為,所以,又,故.設(shè)為平面的法向量,則即取,解得,所以為平面的一個法向量.顯然,為平面的一個法向量,則,據(jù)圖可知,二面角的余弦值為.【答案點睛】本題考查了立體幾何中的線段長度,二面角,意在考查學生的計算能力和空間想象能力.18、(Ⅰ);(Ⅱ),證明見解析.【答案解析】
(Ⅰ)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的方程;(Ⅱ)設(shè)點,,點,,易求直線的方程為:,令得,,同理可得,所以,聯(lián)立直線與橢圓方程,利用韋達定理代入上式,化簡即可得到.【題目詳解】(Ⅰ)解:由題意可知:,解得,橢圓的方程為:;(Ⅱ)證:設(shè)點,,點,,聯(lián)立方程,消去得:,,①,點,,,直線的方程為:,令得,,,,同理可得,,,把①式代入上式得:,為定值.【答案點睛】本題主要考查直線與橢圓的位置關(guān)系、定值問題的求解;關(guān)鍵是能夠通過直線與橢圓聯(lián)立得到韋達定理的形式,利用韋達定理化簡三角形面積得到定值;考查計算能力與推理能力,屬于中檔題.19、(1)證明見解析,;(2).【答案解析】
(1)將等式變形為,進而可證明出是等差數(shù)列,確定數(shù)列的首項和公差,可求得的表達式,進而可得出數(shù)列的通項公式;(2)利用錯位相減法可求得數(shù)列的前項和.【題目詳解】(1)因為,所以,即,所以數(shù)列是等差數(shù)列,且公差,其首項所以,解得;(2),①,②①②,得,所以.【答案點睛】本題考查利用遞推公式證明等差數(shù)列,同時也考查了錯位相減法求和,考查推理能力與計算能力,屬于中等題.20、(1);(2).【答案解析】
(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當時,的面積取得最大值,此時,,在中,再利用余弦定理即可解決.【題目詳解】(1)由正弦定理及已知得,結(jié)合,得,因為,所以,由,得.(2)在中,由余弦定得,因為,所以,當且僅當時,的面積取得最大值,此時.在中,由余弦定理得.即.【答案點睛】本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學生的計算能力,是一道容易題.21、(1);(2)是,定點坐標為或【答案解析】
(1)根據(jù)相切得到,根據(jù)離心率得到,得到橢圓方程.(2)設(shè)直線的方程為,點、的坐標分別為,,聯(lián)立方程得到,,計算點的坐標為,點的坐標為,圓的方程可化為,得到答案.【題目詳解】(1)根據(jù)題意:,因為,所以,所以橢圓的方程為.(2)設(shè)直線的方程為,點、的坐標分別為,,把直線的方程代入橢圓方程化簡得到,所以,,所以,,因為直線的斜率,所以直線的方程,所以點的坐標為,同理,點的坐標為,故以為直徑的圓的方程為,又因為,,所以圓的方程可化為,令,則有,所以定點坐標為或.【答案點睛】本題考查了橢圓方程,圓過定點問題,意在考查學生的計算能力和綜合應用能力.22、(1),;(2)2.【答案解析】
(1)由得,求出曲線的直角坐標方程.由直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石河子大學《應急人力資源管理》2022-2023學年第一學期期末試卷
- 物業(yè)智能化解決方案
- 石河子大學《數(shù)學文化賞析》2021-2022學年第一學期期末試卷
- 石河子大學《口腔頜面外科學》2022-2023學年第一學期期末試卷
- 石河子大學《工程熱力學與傳熱學》2023-2024學年第一學期期末試卷
- 精神科新冠肺炎演練
- 沈陽理工大學《數(shù)學建模》2023-2024學年第一學期期末試卷
- 沈陽理工大學《液壓與氣動技術(shù)》2022-2023學年第一學期期末試卷
- 沈陽理工大學《電氣控制與PC技術(shù)》2022-2023學年期末試卷
- 沈陽理工大學《場地設(shè)計》2021-2022學年第一學期期末試卷
- 高三英語二輪復習讀后續(xù)寫寫作(語言結(jié)構(gòu)線索):小鞋子+課件
- 矮寨特大懸索橋施工控制實施方案
- 跨越門檻童心出發(fā)-少先隊儀式教育的成長探索之路 論文
- 數(shù)字媒體的傳播者和受眾
- cad及天正快捷鍵大全
- 磁共振室常用管理制度
- 森林防火通道規(guī)范
- 國家開放大學2021至2022年(202101-202207)《1439臨床藥理學》期末考試真題及答案完整版(共4套)
- GB/T 2910.1-2009紡織品定量化學分析第1部分:試驗通則
- GB/T 27021.3-2021合格評定管理體系審核認證機構(gòu)要求第3部分:質(zhì)量管理體系審核與認證能力要求
- 井底的四只小青蛙
評論
0/150
提交評論