![2015春計(jì)算機(jī)圖形學(xué)空間信息04.2d geometric_第1頁](http://file4.renrendoc.com/view/195f3b4ac763dbcfe01a4b31ee052673/195f3b4ac763dbcfe01a4b31ee0526731.gif)
![2015春計(jì)算機(jī)圖形學(xué)空間信息04.2d geometric_第2頁](http://file4.renrendoc.com/view/195f3b4ac763dbcfe01a4b31ee052673/195f3b4ac763dbcfe01a4b31ee0526732.gif)
![2015春計(jì)算機(jī)圖形學(xué)空間信息04.2d geometric_第3頁](http://file4.renrendoc.com/view/195f3b4ac763dbcfe01a4b31ee052673/195f3b4ac763dbcfe01a4b31ee0526733.gif)
![2015春計(jì)算機(jī)圖形學(xué)空間信息04.2d geometric_第4頁](http://file4.renrendoc.com/view/195f3b4ac763dbcfe01a4b31ee052673/195f3b4ac763dbcfe01a4b31ee0526734.gif)
![2015春計(jì)算機(jī)圖形學(xué)空間信息04.2d geometric_第5頁](http://file4.renrendoc.com/view/195f3b4ac763dbcfe01a4b31ee052673/195f3b4ac763dbcfe01a4b31ee0526735.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院2D Geometric Transformations1中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Introduction to TransformationsTransformation changes an objects:Position (translation)Size (scaling)Orientation (rotation)Shapes (shear)We will introduce first in 2D or (x,y), build intuitionLater, talk about 3D and 4D?Transform object by applying
2、sequence of matrix multiplications to object vertices2中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Why Matrices?All transformations can be performed using matrix/vector multiplicationAllows pre-multiplication of all matricesNote: point (x,y) needs to be represented as (x,y,1), also called Homogeneous coordinates(齊次坐標(biāo))3中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Poi
3、nt RepresentationWe use a column matrix (2x1 matrix) to represent a 2D pointGeneral form of transformation of a point (x,y) to (x,y) can be written as:or4中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院TranslationTo reposition a point along a straight lineGiven point (x,y) and translation distance (tx, ty)The new point: (x,y)x=x + txy=
4、y + ty(x,y)(x,y)orwhere5中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院3x3 2D Translation Matrixuse 3x1 vectorNote: it es a matrix-vector multiplication6中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Translation of ObjectsHow to translate an object with multiple vertices?Translate individualvertices 7中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院2D RotationDefault rotation center is origin (0,0)q 0 : Rot
5、ate counter clockwise Rotate about the origin by q(x, y)How to compute (x, y) ?fx = r cos () y = r sin ()rx = r cos ( +) y = r sin ( +)9中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Rotation(x,y) (x,y) qfrx = x cos(q) y sin(q) y = y cos(q) + x sin(q) Matrix form?3 x 3? Using trig identities10中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院3x3 2D Rotation Matrix(x,y) (x,
6、y) qfr11中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院RotationHow to rotate an object with multiple vertices? Rotate individualVertices q12中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院2D ScalingScale: Alter object size by scaling factor (sx, sy). i.ex = x . Sx y = y . Sy (1,1)(2,2)Sx = 2, Sy = 2 (2,2)(4,4)13中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院3x3 2D Scaling Matrix14中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Shearing(錯(cuò)切)Y c
7、oordinates are unaffected, but x cordinates are translated linearly with yThat is:y = y x = x + y * h h is fraction of y to be added to x15Inverse transformations(逆變換)Inverse translation matrixTwo-Dimensional translation matrixTwo-Dimensional translation matrix中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Arbitrary Rotatio
8、n Center(任意旋轉(zhuǎn)中心)To rotate about arbitrary point P = (Px, Py) by :Translate object by T(-Px, -Py) so that P coincides with originRotate the object by R()Translate object back: T(Px, Py)In matrix form: T(Px,Py) R() T(-Px,-Py) * PSimilar for arbitrary scaling anchor, 17中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Composing Transformati
9、onComposing transformation applying several transforms in succession to form one overall transformationExample:M1 X M2 X M3 X Pwhere M1, M2, M3 are transform matrices applied to PBe careful with the orderFor example:Translate by (5,0) then rotate 60 degrees is NOT same asRotate by 60 degrees then tr
10、anslate by (5,0)18Matrix Concatenation PropertiesAssociative propertiesTransformation is not commutative (CopyCD!)Order of transformation may affect transformation position中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院19Two-dimensional composite transformation (1)Composite transformationA sequence of transformationsCalculate composit
11、e transformation matrix rather than applying individual transformationsComposite two-dimensional translationsApply two successive translations, T1 and T2Composite transformation matrix in coordinate form中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Two-dimensional composite transformation (2)Composite two-dimensional rotationsTwo suc
12、cessive rotations, R1 and R2 into a point PMultiply two rotation matrices to get composite transformation matrixComposite two-dimensional scaling中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Two-dimensional composite transformation (3)General two-dimensional Pivot-point rotationGraphics package provide only origin rotationPerform a t
13、ranslate-rotate-translate sequenceTranslate the object to move pivot-point position to originRotate the objectTranslate the object back to the original positionComposite matrix in coordinates form中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Two-dimensional composite transformation (4)Example of pivot-point rotationTwo-dim
14、ensional composite transformation (5)General two-dimensional Fixed-point scalingPerform a translate-scaling-translate sequenceTranslate the object to move fixed-point position to originRotate the objectUse inverse of translation in step 1 to return the object back to the original positionComposite m
15、atrix in coordinates form中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Two-dimensional composite transformation (6)Example of fixed-point scaling中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Two-dimensional composite transformation (7)General two-dimensional scaling directionsPerform a rotate-scaling-rotate sequenceComposite matrix in coordinates form中國地質(zhì)大學(xué)
16、計(jì)算機(jī)學(xué)院Other two-dimensional transformation (1)Reflectionimage generated relative to an axis of reflectionReflection about the x-axisReflection about the y-axisReflection about the z-axis中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Other two-dimensional transformation (2)Reflection with axis y=x (diagonal)Other two-dimensional transfo
17、rmation (3)ShearDistorts the shape of an objectShape appears as if the object were composed of internal layers that had been caused to slide over each otherX-axis shear, where shx is the shear parameterX-axis shear with other reference line中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Other two-dimensional transformation (4)Y-axis sh
18、ear with other reference line中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院A unit square (a) is turned into a shifted parallelogram (b) with parameter values shy = 0.5 and xref = 1 in the y -direction shearing transformation Transformation between two-dimensional coordinate systemsCoordinate transfer from one reference frame to anoth
19、er(坐標(biāo)系之間轉(zhuǎn)換)StepsTranslate so that origin (x0,y0) of the xy system is moved to the origin of (0,0) of the xy systemRotate the x axis onto the x axisExample: Reference a Cartesian xy system specified with coordinate origin (x0,y0) and orientation angle in Cartesian xy systemMatrix transformation of the translation and rotationComposite matrix of the transformation中國地質(zhì)大學(xué)計(jì)算機(jī)學(xué)院Transformation between two-di
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年電視自動校時(shí)鐘項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國牛仔布拔染印花漿行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年杭竹青酒項(xiàng)目可行性研究報(bào)告
- 2025年支架節(jié)能燈項(xiàng)目可行性研究報(bào)告
- 2025年左擋板項(xiàng)目可行性研究報(bào)告
- 2025年咖啡豆油項(xiàng)目可行性研究報(bào)告
- 2025年冷軋鋼帶項(xiàng)目可行性研究報(bào)告
- 2025至2030年驅(qū)動變壓器高頻電感項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年金屬折疊濾芯項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年中國醋酸甲地孕酮片數(shù)據(jù)監(jiān)測研究報(bào)告
- 2025年貴州黔源電力股份有限公司招聘筆試參考題庫含答案解析
- 《休閑食品加工技術(shù)》 課件 1 休閑食品生產(chǎn)與職業(yè)生活
- 春季開學(xué)安全第一課
- 《病史采集》課件
- 十大護(hù)理安全隱患
- 2025年新生兒黃疸診斷與治療研究進(jìn)展
- 廣東大灣區(qū)2024-2025學(xué)年度高一上學(xué)期期末統(tǒng)一測試英語試題(無答案)
- 失效模式和效應(yīng)分析護(hù)理
- 2025年四川中煙工業(yè)限責(zé)任公司招聘110人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年山東菏澤投資發(fā)展集團(tuán)限公司招聘61人管理單位筆試遴選500模擬題附帶答案詳解
- 幕墻工程項(xiàng)目管理手冊
評論
0/150
提交評論