版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1 若數(shù)列滿足且,則使的的值為( )ABCD2已知函數(shù),則不等式的解集為( )ABCD3已知,分別為內(nèi)角,的對(duì)邊,的面積為,則( )AB4C5D4若,則的值為( )ABCD5已知函,則的最小值為( )AB1C0D6設(shè),則“ ”是“”的(
2、)A充分而不必要條件B必要而不充分條件C充分必要條件D既不充分也不必要條件7設(shè)命題:,則為A,B,C,D,8已知為一條直線,為兩個(gè)不同的平面,則下列說法正確的是( )A若,則B若,則C若,則D若,則9己知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)分別在拋物線上,且,直線交于點(diǎn),垂足為,若的面積為,則到的距離為( )ABC8D610如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達(dá)處,此時(shí)測得在的北偏西的方向上,再開回處,由向西開百海里到達(dá)處,測得在的北偏東的方向上,則、兩座島嶼間的距離為( )A3BC4D11若,則下列結(jié)論正確的是(
3、)ABCD12已知將函數(shù)(,)的圖象向右平移個(gè)單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對(duì)稱,則的值為( )A2B3C4D二、填空題:本題共4小題,每小題5分,共20分。13的展開式中的系數(shù)為_(用具體數(shù)據(jù)作答).14已知向量,若向量與向量平行,則實(shí)數(shù)_15如圖,在梯形中,分別是的中點(diǎn),若,則的值為_.16學(xué)校藝術(shù)節(jié)對(duì)同一類的,四件參賽作品,只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測如下:甲說:“或作品獲得一等獎(jiǎng)”; 乙說:“作品獲得一等獎(jiǎng)”;丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”; 丁說:“作品獲得一等獎(jiǎng)”若這四位同學(xué)中有且只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_
4、.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖所示,直角梯形中,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請(qǐng)說明理由.18(12分)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD平面BCD,點(diǎn)E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EFAD.求證:(1)EF平面ABC;(2)ADAC.19(12分)在直角坐標(biāo)系中,已知直線的直角坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線和
5、直線的極坐標(biāo)方程;(2)已知直線與曲線、相交于異于極點(diǎn)的點(diǎn),若的極徑分別為,求的值.20(12分)如圖,已知正方形所在平面與梯形所在平面垂直,BMAN,(1)證明:平面;(2)求點(diǎn)N到平面CDM的距離21(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值以及此時(shí)的直角坐標(biāo).22(10分)為貫徹十九大報(bào)告中“要提供更多優(yōu)質(zhì)生態(tài)產(chǎn)品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況現(xiàn)分別從、三
6、塊試驗(yàn)田中各隨機(jī)抽取株植物測量高度,數(shù)據(jù)如下表(單位:厘米): 組組組假設(shè)所有植株的生長情況相互獨(dú)立從、三組各隨機(jī)選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據(jù)的平均數(shù)記為從、三塊試驗(yàn)田中分別再隨機(jī)抽取株該種植物,它們的高度依次是、(單位:厘米)這個(gè)新數(shù)據(jù)與表格中的所有數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,試比較和的大?。ńY(jié)論不要求證明)參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】因?yàn)?,所以是等差?shù)列,且公差,則,所以由
7、題設(shè)可得,則,應(yīng)選答案C2D【解析】先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域?yàn)?因?yàn)?,所以為上的偶函?shù),因?yàn)楹瘮?shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因?yàn)?,所以,且,解?故選:D【點(diǎn)睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.3D【解析】由正弦定理可知,從而可求出.通過可求出,結(jié)合余弦定理即可求出 的值.【詳解】解:,即,即. ,則.,解得., 故選:D.【點(diǎn)睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系.本題的關(guān)鍵是通過正弦定理結(jié)合已知條
8、件,得到角 的正弦值余弦值.4C【解析】根據(jù),再根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)?,所以二?xiàng)式的展開式的通項(xiàng)公式為:,令,所以,因此有.故選:C【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了二項(xiàng)式展開式通項(xiàng)公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力5B【解析】,利用整體換元法求最小值.【詳解】由已知,又,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.6C【解析】根據(jù)充分條件和必要條件的定義結(jié)合對(duì)數(shù)的運(yùn)算進(jìn)行判斷即可【詳解】a,b(1,+),ablogab1,logab1ab,ab是logab1的充分必要條件,故選C【點(diǎn)睛】本題主要考查充
9、分條件和必要條件的判斷,根據(jù)不等式的解法是解決本題的關(guān)鍵7D【解析】直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【詳解】因?yàn)槿Q命題的否定是特稱命題,所以,命題:,則為:,.故本題答案為D.【點(diǎn)睛】本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.8D【解析】A. 若,則或,故A錯(cuò)誤;B. 若,則或故B錯(cuò)誤;C. 若,則或,或與相交;D. 若,則,正確.故選D.9D【解析】作,垂足為,過點(diǎn)N作,垂足為G,設(shè),則,結(jié)合圖形可得,從而可求出,進(jìn)而可求得,由的面積即可求出,再結(jié)合為線段的中點(diǎn),即可求出到的距離【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過點(diǎn)N作,垂足為G,則,所以在中
10、,所以,所以,在中,所以,所以,所以 解得,因?yàn)?,所以為線段的中點(diǎn),所以F到l的距離為故選:D【點(diǎn)睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識(shí),屬于中檔題10B【解析】先根據(jù)角度分析出的大小,然后根據(jù)角度關(guān)系得到的長度,再根據(jù)正弦定理計(jì)算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,所以,所以,又因?yàn)椋?,所?故選:B.【點(diǎn)睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關(guān)鍵.11D【解析】根據(jù)指數(shù)函數(shù)的性質(zhì),取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,即,又由,所以.故選:D.【點(diǎn)睛】本
11、題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質(zhì),求得的取值范圍是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.12B【解析】因?yàn)閷⒑瘮?shù)(,)的圖象向右平移個(gè)單位長度后得到函數(shù)的圖象,可得,結(jié)合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個(gè)單位長度后得到函數(shù)的圖象,又和的圖象都關(guān)于對(duì)稱,由,得,即,又,.故選:B.【點(diǎn)睛】本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對(duì)稱求參數(shù),解題關(guān)鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】利用二項(xiàng)展開式的通項(xiàng)公式可求的系數(shù).【詳解】的展開
12、式的通項(xiàng)公式為,令,故,故的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式中指定項(xiàng)的系數(shù),注意利用通項(xiàng)公式來計(jì)算,本題屬于容易題.14【解析】由題可得,因?yàn)橄蛄颗c向量平行,所以,解得15【解析】建系,設(shè)設(shè),由可得,進(jìn)一步得到的坐標(biāo),再利用數(shù)量積的坐標(biāo)運(yùn)算即可得到答案.【詳解】以A為坐標(biāo)原點(diǎn),AD為x軸建立如圖所示的直角坐標(biāo)系,設(shè),則,所以,由,得,即,又,所以,故,所以.故答案為:2【點(diǎn)睛】本題考查利用坐標(biāo)法求向量的數(shù)量積,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.16B【解析】首先根據(jù)“學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng)”,故假設(shè)分別為一等獎(jiǎng),然后判斷甲、乙、丙、丁四位同學(xué)的說法的正確性,即
13、可得出結(jié)果【詳解】若A為一等獎(jiǎng),則甲、丙、丁的說法均錯(cuò)誤,不滿足題意;若B為一等獎(jiǎng),則乙、丙的說法正確,甲、丁的說法錯(cuò)誤,滿足題意;若C為一等獎(jiǎng),則甲、丙、丁的說法均正確,不滿足題意;若D為一等獎(jiǎng),則乙、丙、丁的說法均錯(cuò)誤,不滿足題意;綜上所述,故B獲得一等獎(jiǎng)【點(diǎn)睛】本題屬于信息題,可根據(jù)題目所給信息來找出解題所需要的條件并得出答案,在做本題的時(shí)候,可以采用依次假設(shè)為一等獎(jiǎng)并通過是否滿足題目條件來判斷其是否正確三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)見解析;(2)存在,長【解析】(1)先證面,又因?yàn)槊?所以平面平面.(2)根據(jù)題意建立空間直角坐標(biāo)系. 列出各點(diǎn)的
14、坐標(biāo)表示,設(shè),則可得出向量,求出平面的法向量為,利用直線與平面所成角的正弦公式列方程求出或,從而求出線段的長.【詳解】解:(1)證明:因?yàn)樗倪呅螢榫匦?.面面又面平面平面(2)取為原點(diǎn),所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系.如圖所示:則,設(shè),;,設(shè)平面的法向量為,不防設(shè).,化簡得,解得或;當(dāng)時(shí),;當(dāng)時(shí),;綜上存在這樣的點(diǎn),線段的長.【點(diǎn)睛】本題考查平面與平面垂直的判定定理的應(yīng)用,考查利用線面所成角求參數(shù)問題,是幾何綜合題,考查空間想象力以及計(jì)算能力.18(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識(shí)證明,再由線面平行判定定理得結(jié)論;(2)先由面面垂直性質(zhì)定理得平面,則
15、,再由ABAD及線面垂直判定定理得AD平面ABC,即可得ADAC試題解析:證明:(1)在平面內(nèi),因?yàn)锳BAD,所以.又因?yàn)槠矫鍭BC,平面ABC,所以EF平面ABC.(2)因?yàn)槠矫鍭BD平面BCD,平面平面BCD=BD, 平面BCD,所以平面.因?yàn)槠矫?,所?.又ABAD,平面ABC,平面ABC,所以AD平面ABC,又因?yàn)锳C平面ABC,所以ADAC.點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直19(1),.(2)【解析】(1)先將曲線的參數(shù)方程化為直角
16、坐標(biāo)方程,即可代入公式化為極坐標(biāo);根據(jù)直線的直角坐標(biāo)方程,求得傾斜角,即可得極坐標(biāo)方程.(2)將直線的極坐標(biāo)方程代入曲線、可得,進(jìn)而代入可得的值.【詳解】(1)曲線的參數(shù)方程為(為參數(shù)),消去得,把,代入得,從而得的極坐標(biāo)方程為,直線的直角坐標(biāo)方程為,其傾斜角為,直線的極坐標(biāo)方程為.(2)將代入曲線的極坐標(biāo)方程分別得到,則.【點(diǎn)睛】本題考查了參數(shù)方程化為普通方程的方法,直角坐標(biāo)方程化為極坐標(biāo)方程的方法,極坐標(biāo)的幾何意義,屬于中檔題.20(1)證明見解析 (2)【解析】(1)因?yàn)檎叫蜛BCD所在平面與梯形ABMN所在平面垂直,平面平面,所以平面ABMN,因?yàn)槠矫鍭BMN,平面ABMN,所以,
17、因?yàn)椋?,因?yàn)椋?,所以,因?yàn)樵谥苯翘菪蜛BMN中,所以, 所以,所以,因?yàn)?,所以平?(2)如圖,取BM的中點(diǎn)E,則,又BMAN,所以四邊形ABEN是平行四邊形,所以NEAB,又ABCD,所以NECD,因?yàn)槠矫鍯DM,平面CDM,所以NE平面CDM,所以點(diǎn)N到平面CDM的距離與點(diǎn)E到平面CDM的距離相等, 設(shè)點(diǎn)N到平面CDM的距離為h,由可得點(diǎn)B到平面CDM的距離為2h,由題易得平面BCM,所以,且,所以, 又,所以由可得,解得,所以點(diǎn)N到平面CDM的距離為 21(1):,:;(2),此時(shí).【解析】試題分析:(1)的普通方程為,的直角坐標(biāo)方程為;(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為到的距離當(dāng)
18、且僅當(dāng)時(shí),取得最小值,最小值為,此時(shí)的直角坐標(biāo)為.試題解析: (1)的普通方程為,的直角坐標(biāo)方程為.(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為,因?yàn)槭侵本€,所以的最小值即為到的距離的最小值,.當(dāng)且僅當(dāng)時(shí),取得最小值,最小值為,此時(shí)的直角坐標(biāo)為.考點(diǎn):坐標(biāo)系與參數(shù)方程.【方法點(diǎn)睛】參數(shù)方程與普通方程的互化:把參數(shù)方程化為普通方程,需要根據(jù)其結(jié)構(gòu)特征,選取適當(dāng)?shù)南麉⒎椒?,常見的消參方法有:代入消參法;加減消參法;平方和(差)消參法;乘法消參法;混合消參法等把曲線的普通方程化為參數(shù)方程的關(guān)鍵:一是適當(dāng)選取參數(shù);二是確?;セ昂蠓匠痰牡葍r(jià)性注意方程中的參數(shù)的變化范圍22(1);(2);(3)【解析】設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、,可得出.(1)設(shè)事件為“丙的高度小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國孔狀EVA鞋墊市場調(diào)查研究報(bào)告
- 2025年中國雙鉗口市場調(diào)查研究報(bào)告
- 2025至2031年中國白蘆筍條行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國水晶內(nèi)雕機(jī)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國彩色美紋紙膠帶行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國插入式壓縮活性炭棒濾芯數(shù)據(jù)監(jiān)測研究報(bào)告
- 2025至2030年中國庭院埋地?zé)魯?shù)據(jù)監(jiān)測研究報(bào)告
- 二零二五年度海水淡化項(xiàng)目水處理維修工程合同樣本2篇
- 二零二五年度企業(yè)間民間借貸合同范本-設(shè)備融資租賃3篇
- 第3章《物質(zhì)的性質(zhì)與轉(zhuǎn)化》測試題(含答案)2021-2022學(xué)年高一上學(xué)期魯科版化學(xué)必修第一冊(cè)
- 植物芳香油的提取 植物有效成分的提取教學(xué)課件
- 2024年國家工作人員學(xué)法用法考試題庫及參考答案
- 國家公務(wù)員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術(shù)》課件 第6講 阻燃纖維及織物
- 2021-2022學(xué)年遼寧省重點(diǎn)高中協(xié)作校高一上學(xué)期期末語文試題
- 同等學(xué)力英語申碩考試詞匯(第六版大綱)電子版
- 人教版五年級(jí)上冊(cè)遞等式計(jì)算100道及答案
- 墓地個(gè)人協(xié)議合同模板
- 2024年部編版初中語文各年級(jí)教師用書七年級(jí)(上冊(cè))
- 2024年新課標(biāo)全國Ⅰ卷語文高考真題試卷(含答案)
- 湖南省退休人員節(jié)日慰問政策
評(píng)論
0/150
提交評(píng)論