2021-2022學(xué)年上海高中高考壓軸卷數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年上海高中高考壓軸卷數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年上海高中高考壓軸卷數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年上海高中高考壓軸卷數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年上海高中高考壓軸卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知實數(shù),則的大小關(guān)系是()ABCD2某網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是( )A月收入的極差為60B7月份的利潤

2、最大C這12個月利潤的中位數(shù)與眾數(shù)均為30D這一年的總利潤超過400萬元3中國古代數(shù)學(xué)著作孫子算經(jīng)中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于( )ABCD4在直角梯形中,點為上一點,且,當?shù)闹底畲髸r,( )AB2CD5已知橢圓的左、右焦點分別為,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率ABCD6已知命題p:“”是“”的充要條件;,則( )A為真命題B為真命題C為真命題D為假命題7體育教師指導(dǎo)4個學(xué)生訓(xùn)練轉(zhuǎn)

3、身動作,預(yù)備時,4個學(xué)生全部面朝正南方向站成一排.訓(xùn)練時,每次都讓3個學(xué)生“向后轉(zhuǎn)”,若4個學(xué)生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是( )A3B4C5D68已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對應(yīng)的點所在的象限為( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限9已知函數(shù),若關(guān)于的方程有4個不同的實數(shù)根,則實數(shù)的取值范圍為( )ABCD10已知的部分圖象如圖所示,則的表達式是( )ABCD112020年是脫貧攻堅決戰(zhàn)決勝之年,某市為早日實現(xiàn)目標,現(xiàn)將甲、乙、丙、丁4名干部派遺到、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有( )A6種B12種C24種D36種1

4、2設(shè),則關(guān)于的方程所表示的曲線是( )A長軸在軸上的橢圓B長軸在軸上的橢圓C實軸在軸上的雙曲線D實軸在軸上的雙曲線二、填空題:本題共4小題,每小題5分,共20分。13已知函數(shù)f(x)若關(guān)于x的方程f(x)kx有兩個不同的實根,則實數(shù)k的取值范圍是_14 “六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為_15在四棱錐中,底面為正方形,面分別是棱的中點,過的平面交棱于點,則四邊形面積為_.16過圓的圓心且與直線垂直的直線方

5、程為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)函數(shù),其中()當為偶函數(shù)時,求函數(shù)的極值;()若函數(shù)在區(qū)間上有兩個零點,求的取值范圍18(12分)已知函數(shù)(1)當時,求曲線在點的切線方程;(2)討論函數(shù)的單調(diào)性19(12分)已知函數(shù)(1)當時,求不等式的解集;(2)的圖象與兩坐標軸的交點分別為,若三角形的面積大于,求參數(shù)的取值范圍.20(12分)在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為(1)求曲線的直角坐標方程和曲線的參數(shù)方程;(2)設(shè)曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長

6、的最大值21(12分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角CAD60(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為APB,DPC,問點P在何處時,+最???22(10分)已知函數(shù)().(1)討論的單調(diào)性;(2)若對,恒成立,求的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出【詳解】解:,故選:B【點睛】本題考查

7、了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題2D【解析】直接根據(jù)折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數(shù)為30,中位數(shù)為30,故選項C正確,選項D錯誤.故選:.【點睛】本題考查了折線圖,意在考查學(xué)生的理解能力和應(yīng)用能力.3C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.4B【解析】由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題

8、給,得出,進而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,可求得,所以點在線段上, 設(shè) , 則,即,又因為所以,所以,當時,等號成立.所以.故選:B.【點睛】本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.5B【解析】設(shè),則,因為,所以若,則,所以,所以,不符合題意,所以,則,所以,所以,設(shè),則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率故選B6B【解析】由的單調(diào)性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題對于命題q,當,即時,;

9、當,即時,由,得,無解,因此命題q是假命題所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運算的能力,屬于中檔題.7B【解析】通過列舉法,列舉出同學(xué)的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“”“”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構(gòu)造較為巧妙,可通過列舉的方法直觀感受,屬于基礎(chǔ)題.8B【解析】分別比較復(fù)數(shù)的實部、

10、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對應(yīng)的點所在的象限.【詳解】因為時,所以,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.故選:B.【點睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.9C【解析】求導(dǎo),先求出在單增,在單減,且知設(shè),則方程有4個不同的實數(shù)根等價于方程在上有兩個不同的實數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,令,解得,故當時,當,且,故方程在上有兩個不同的實數(shù)根,故,解得.故選:C.【點睛】本題考查確定函數(shù)零點或方程根個數(shù).其方法:(1)構(gòu)造法:構(gòu)造函數(shù)(易求,可解),轉(zhuǎn)化為確定的零點個數(shù)問題求解,利用導(dǎo)數(shù)研究該函數(shù)的單調(diào)性、極值,并

11、確定定義區(qū)間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數(shù)形結(jié)合求解;(2)定理法:先用零點存在性定理判斷函數(shù)在某區(qū)間上有零點,然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值(最值)及區(qū)間端點值符號,進而判斷函數(shù)在該區(qū)間上零點的個數(shù).10D【解析】由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點的坐標代入函數(shù)的解析式,結(jié)合的取值范圍求出的值,由此可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,.將點代入函數(shù)的解析式得,得,則,因此,.故選:D.【點睛】本題考查利用圖象求三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.11B【解析】分成甲單獨到縣和甲與另一人一同到

12、縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點睛】本小題主要考查簡答排列組合的計算,屬于基礎(chǔ)題.12C【解析】根據(jù)條件,方程即,結(jié)合雙曲線的標準方程的特征判斷曲線的類型【詳解】解:k1,1+k0,k2-10,方程,即,表示實軸在y軸上的雙曲線,故選C【點睛】本題考查雙曲線的標準方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵二、填空題:本題共4小題,每小題5分,共20分。13【解析】由圖可知,當直線ykx在直線OA與x軸(不含它們)之間時,ykx與yf(x)的圖像有兩個不同交點,即方

13、程有兩個不相同的實根14【解析】分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內(nèi)部也全排列【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為故答案為:1【點睛】本題考查排列的應(yīng)用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法15【解析】設(shè)是中點,由于分別是棱的中點,所以,所以,所以四邊形是平行四邊形.由于平面,所以,

14、而,所以平面,所以.由于,所以,也即,所以四邊形是矩形. 而.從而.故答案為:.【點睛】本小題主要考查空間平面圖形面積的計算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.16【解析】根據(jù)與已知直線垂直關(guān)系,設(shè)出所求直線方程,將已知圓圓心坐標代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設(shè)為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點睛】本題考查圓的方程、直線方程求法,注意直線垂直關(guān)系的靈活應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17()極小值,極大值;()或【解析】()根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)

15、零點列表分析導(dǎo)函數(shù)符號變化規(guī)律,即得極值,()先分離變量,轉(zhuǎn)化研究函數(shù),利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍【詳解】()由函數(shù)是偶函數(shù),得,即對于任意實數(shù)都成立,所以. 此時,則.由,解得. 當x變化時,與的變化情況如下表所示: 00極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增. 所以有極小值,有極大值. ()由,得. 所以“在區(qū)間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”. 對函數(shù)求導(dǎo),得. 由,解得,. 當x變化時,與的變化情況如下表所示: 00極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增. 又因為,所以當或時,直線與曲線,有且只有兩個公共點. 即當或

16、時,函數(shù)在區(qū)間上有兩個零點.【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.18(1);(2)當時,在上單調(diào)遞增,在上單調(diào)遞減;當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在上單調(diào)遞增;當時,在和上單調(diào)遞增,在上單調(diào)遞減.【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(2)易得函數(shù)定義域是,且.故分,和與四種情況,分別分析得極值點的關(guān)系進而求得原函數(shù)的單調(diào)性即可.【詳解】(1)當時,則切線的斜率為.又,則曲線在點的切線方程是,即.(2)的定

17、義域是.當時,所以當時,;當時,所以在上單調(diào)遞增,在上單調(diào)遞減;當時,所以當和時,;當時,所以在和上單調(diào)遞增,在上單調(diào)遞減;當時,所以在上恒成立.所以在上單調(diào)遞增;當時,所以和時,;時,.所以在和上單調(diào)遞增,在上單調(diào)遞減.綜上所述,當時,在上單調(diào)遞增,在上單調(diào)遞減;當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在上單調(diào)遞增;當時,在和上單調(diào)遞增,在上單調(diào)遞減.【點睛】本題主要考查了導(dǎo)數(shù)的幾何意義以及含參數(shù)的函數(shù)單調(diào)性討論,需要根據(jù)題意求函數(shù)的極值點,再根據(jù)極值點的大小關(guān)系分類討論即可.屬于??碱}.19(1)(2)【解析】(1)當時,不等式可化為:,再利用絕對值的意義,分,討論求解.(2)根據(jù)可得,

18、得到函數(shù)的圖象與兩坐標軸的交點坐標分別為,再利用三角形面積公式由求解.【詳解】(1)當時,不等式可化為:當時,不等式化為,解得:當時,不等式化為,解得:,當時,不等式化為解集為,綜上,不等式的解集為.(2)由題得,所以函數(shù)的圖象與兩坐標軸的交點坐標分別為,的面積為,由,得(舍),或,所以,參數(shù)的取值范圍是.【點睛】本題主要考查絕對值不等式的解法和絕對值函數(shù)的應(yīng)用,還考查分類討論的思想和運算求解的能力,屬于中檔題.20(1)曲線的直角坐標方程為,曲線的參數(shù)方程為為參數(shù)(2)【解析】(1)將代入,可得,所以曲線的直角坐標方程為由可得,將,代入上式,可得,整理可得,所以曲線的參數(shù)方程為為參數(shù)(2)由題可設(shè),所以,所以,因為,所以,所以當,即時,l取得最大值為,所以的周長的最大值為21(1);(2)當BP為cm時,+取得最小值【解析】(1)作AECD,垂足為E,則CE10,DE10,設(shè)BCx,根據(jù)得到,解得答案.(2)設(shè)BPt,則,故,設(shè),求導(dǎo)得到函數(shù)單調(diào)性,得到最值.【詳解】(1)作AECD,垂足為E,則CE10,D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論