2021-2022學年河南省豫北地區(qū)重點高考數(shù)學三模試卷含解析_第1頁
2021-2022學年河南省豫北地區(qū)重點高考數(shù)學三模試卷含解析_第2頁
2021-2022學年河南省豫北地區(qū)重點高考數(shù)學三模試卷含解析_第3頁
2021-2022學年河南省豫北地區(qū)重點高考數(shù)學三模試卷含解析_第4頁
2021-2022學年河南省豫北地區(qū)重點高考數(shù)學三模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1如圖,在ABC中,點M是邊BC的中點,將ABM沿著AM翻折成ABM,且點B不在平面AMC內(nèi),點P是線段BC上一點.

2、若二面角P-AM-B與二面角P-AM-C的平面角相等,則直線AP經(jīng)過ABC的( )A重心B垂心C內(nèi)心D外心2窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風格獨特,神獸人們喜愛下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形若在這個窗花內(nèi)部隨機取一個點,則該點不落在任何一個小正方形內(nèi)的概率是( )ABCD3已知集合A=y|y=|x|1,xR,B=x|x2,則下列結(jié)論正確的是( )A3A B3B CAB=B DAB=B4 “完全數(shù)”是一些特殊的自然數(shù),它所有的真因子

3、(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學家畢達哥拉斯公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為( )ABCD5把函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,若函數(shù)是偶函數(shù),則實數(shù)的最小值是( )ABCD6若函數(shù)在處取得極值2,則( )A-3B3C-2D27函數(shù)在上的圖象大致為( )ABCD8已知復數(shù)滿足(是虛數(shù)單位),則=()ABCD9已知向量與向量平行,且,則( )ABCD10已知某超市2018年12個月的收入與支出

4、數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說法錯誤的是( )A該超市2018年的12個月中的7月份的收益最高B該超市2018年的12個月中的4月份的收益最低C該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元11己知四棱錐中,四邊形為等腰梯形,是等邊三角形,且;若點在四棱錐的外接球面上運動,記點到平面的距離為,若平面平面,則的最大值為( )ABCD12在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13在ABC中,()

5、(1),若角A的最大值為,則實數(shù)的值是_14袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為_15在四棱錐中,是邊長為的正三角形,為矩形,.若四棱錐的頂點均在球的球面上,則球的表面積為_16已知點是直線上的一點,將直線繞點逆時針方向旋轉(zhuǎn)角,所得直線方程是,若將它繼續(xù)旋轉(zhuǎn)角,所得直線方程是,則直線的方程是_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù)(1)若,求的取值范圍;(2)若,對,不等式恒成立,求的取值范圍18(12分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)

6、若,求直線與平面所成角的正弦值.19(12分)設(shè)函數(shù)(1)當時,解不等式;(2)若的解集為,求證:20(12分)在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為;(1)求直線的直角坐標方程和曲線的直角坐標方程;(2)若直線與曲線交點分別為,點,求的值21(12分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,三棱錐的體積為,求菱形的邊長.22(10分)等差數(shù)列中,分別是下表第一、二、三行中的某一個數(shù),且其中的任何兩個數(shù)不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選

7、擇一個可能的組合,并求數(shù)列的通項公式;(2)記(1)中您選擇的的前項和為,判斷是否存在正整數(shù),使得,成等比數(shù)列,若有,請求出的值;若沒有,請說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】根據(jù)題意P到兩個平面的距離相等,根據(jù)等體積法得到SPBM=SPCM,得到答案.【詳解】二面角P-AM-B與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-ABM=VP-ACM,即VA-PBM=VA-PCM,兩三棱錐高相等,故SPBM=SPCM,故BP=CP,故P為CB中點.故選:A.【點睛】本題考查了二面角,

8、等體積法,意在考查學生的計算能力和空間想象能力.2D【解析】由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應用,屬于基礎(chǔ)題.3C【解析】試題分析:集合 考點:集合間的關(guān)系4C【解析】先求出五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個數(shù),6

9、和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數(shù)的應用.5A【解析】先求出的解析式,再求出的解析式,根據(jù)三角函數(shù)圖象的對稱性可求實數(shù)滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個單位長度,所得圖象對應的函數(shù)解析式為,故.令,解得,.因為為偶函數(shù),故直線為其圖象的對稱軸,令,故,因為,故,當時,.故選:A.【點睛】本題考查三角函數(shù)的圖象變換以及三角函數(shù)的圖象性質(zhì),注意平移變換是對自變量做加減,比如把的圖象向右平移1個單位后,得到的圖象對應的解析式為,另外,如果為正弦型函數(shù)圖象的對稱軸,則有,本題屬于中檔題6A【解析】對函數(shù)求導,可得,即可求出,

10、進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數(shù)的導數(shù)與極值,考查了學生的運算求解能力,屬于基礎(chǔ)題.7A【解析】首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,故函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數(shù)圖象的識別,函數(shù)的奇偶性的應用,屬于基礎(chǔ)題.8A【解析】把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡得答案【詳解】解:由,得,故選【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎(chǔ)題9B【解析】設(shè),根據(jù)題意得出關(guān)于、的方程組,解出這兩個未知數(shù)的值,即可得出向量的坐標.【詳

11、解】設(shè),且,由得,即,由,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數(shù)量積的坐標運算,考查計算能力,屬于中等題.10D【解析】用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本

12、小題主要考查圖表分析,考查收益的計算方法,屬于基礎(chǔ)題.11A【解析】根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點,則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設(shè)四棱錐的外接球半徑為,則,而,所以,故選:A.【點睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.12B【解析】設(shè),則,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,因為B,P,D三點共線,C,P,E三點共線,

13、所以,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。131【解析】把向量進行轉(zhuǎn)化,用表示,利用基本不等式可求實數(shù)的值.【詳解】,解得1故答案為:1.【點睛】本題主要考查平面向量的數(shù)量積應用,綜合了基本不等式,側(cè)重考查數(shù)學運算的核心素養(yǎng).14【解析】試題分析:根據(jù)題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、共6種,其中2只球的顏色不同的是、共5種;所以所求的概率是考點:古典概型概率15【解析】做 中點,的中點,連接,由已知條件可求出,運用余弦定理可求,從而在平面中建立坐標系,則以及的

14、外接圓圓心為和長方形的外接圓圓心為在該平面坐標系的坐標可求,通過球心滿足,即可求出的坐標,從而可求球的半徑,進而能求出球的表面積.【詳解】解:如圖做 中點,的中點,連接 ,由題意知,則 設(shè)的外接圓圓心為,則在直線上且 設(shè)長方形的外接圓圓心為,則在上且.設(shè)外接球的球心為 在 中,由余弦定理可知,.在平面中,以 為坐標原點,以 所在直線為 軸,以過點垂直于 軸的直線為 軸,如圖建立坐標系,由題意知,在平面中且 設(shè) ,則,因為,所以 解得.則 所以球的表面積為.故答案為: .【點睛】本題考查了幾何體外接球的問題,考查了球的表面積.關(guān)于幾何體的外接球的做題思路有:一是通過將幾何體補充到長方體中,將幾何

15、體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設(shè)半徑列方程求解;三是通過空間、平面坐標系進行求解.16【解析】求出點坐標,由于直線與直線垂直,得出直線的斜率為,再由點斜式寫出直線的方程.【詳解】由于直線可看成直線先繞點逆時針方向旋轉(zhuǎn)角,再繼續(xù)旋轉(zhuǎn)角得到,則直線與直線垂直,即直線的斜率為所以直線的方程為,即故答案為:【點睛】本題主要考查了求直線的方程,涉及了求直線的交點以及直線與直線的位置關(guān)系,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2).【解析】(1)分類討論,即可

16、得出結(jié)果;(2)先由題意,將問題轉(zhuǎn)化為即可,再求出,的最小值,解不等式即可得出結(jié)果.【詳解】(1)由得,若,則,顯然不成立;若,則,即;若,則,即,顯然成立,綜上所述,的取值范圍是(2)由題意知,要使得不等式恒成立,只需,當時,所以;因為,所以,解得,結(jié)合,所以的取值范圍是【點睛】本題主要考查含絕對值不等式的解法,以及由不等式恒成立求參數(shù)的問題,熟記分類討論的思想、以及絕對值不等式的性質(zhì)即可,屬于常考題型.18()見證明;()【解析】()取的中點為,連結(jié),易證四邊形為平行四邊形,即,由于,為的中點,可得到,從而得到,即可證明平面,從而得到;()易證,兩兩垂直,以,分別為,軸,建立如圖所示的空間

17、直角坐標系,求出平面的一個法向量為,設(shè)與平面所成角為,則,即可得到答案【詳解】解:()取的中點為,連結(jié).由是三棱臺得,平面平面,從而.,四邊形為平行四邊形,.,為的中點,.平面平面,且交線為,平面,平面,而平面,.()連結(jié).由是正三角形,且為中點,則.由()知,平面,兩兩垂直.以,分別為,軸,建立如圖所示的空間直角坐標系.設(shè),則,.設(shè)平面的一個法向量為.由可得,.令,則,.設(shè)與平面所成角為,則.【點睛】本題考查了空間幾何中,面面垂直的性質(zhì),線線垂直的證明,及線面角的求法,考查了學生的邏輯推理能力與計算求解能力,屬于中檔題19(1);(2)見解析.【解析】(1)當時,將所求不等式變形為,然后分、

18、三段解不等式,綜合可得出原不等式的解集;(2)先由不等式的解集求得實數(shù),可得出,將代數(shù)式變形為,將與相乘,展開后利用基本不等式可求得的最小值,進而可證得結(jié)論.【詳解】(1)當時,不等式為,且.當時,由得,解得,此時;當時,由得,該不等式不成立,此時;當時,由得,解得,此時.綜上所述,不等式的解集為;(2)由,得,即或,不等式的解集為,故,解得, ,當且僅當,時取等號,【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式,考查推理能力與計算能力,屬于中等題.20(),曲線 ()【解析】試題分析:(1)消去參數(shù)可得直線的直角坐標系方程,由可得曲線的直角坐標方程;(2)將(為參數(shù))代入曲線的方程得:,利用韋達定理求解即可.試題解析:(1),曲線,(2)將(為參數(shù))代入曲線的方程得:.所以.所以.21(1)證明見解析;(2)1【解析】(1)由菱形的性質(zhì)和線面垂直的性質(zhì),可得平面,再由面面垂直的判定定理,即可得證;(2)設(shè),分別求得,和的長,運用三棱錐的體積公式,計算可得所求值【詳解】(1)四邊形為菱形,平面,又,平面,又平面,平面平面;(2)設(shè),在菱形中,由,可得,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,菱形的邊長為1【點睛】本題考查面面垂直的判定,注意運用線面垂直轉(zhuǎn)化,考查三棱錐的體積的求法,考查化簡運算能力和推理能力,意在考查學生對這些知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論