版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、物理備課大師 物理備課大師 【全免費(fèi)】備課大師全科【備課大師全科【9門】:免注冊,不收費(fèi)! /高中物理解題方法之極值法江蘇省特級教師戴儒京高中物理中的極值問題,是物理教學(xué)研究中的活躍話題。本文通過例題歸納綜合出極值問題的四種主要解法。一、二次函數(shù)求極值2b 2 b2 -4acb一次函數(shù) y=ax +bx+c=a(x+)-,當(dāng) x =時(shí),y 有極值2a 4a2a4ac -b2ym =,若a0,為極小值,若 a0,為極大值。4a例1試證明在非彈性碰撞中,完全非彈性碰撞(碰撞后兩物體粘合在一起)動(dòng)能損失最大。設(shè)第一個(gè)物體的質(zhì)量為mi ,速度為Vi。第二個(gè)物體的質(zhì)量為m2,速度為V2。碰撞以后的速度分
2、別為 V1和V2。假使這四個(gè)速度都在一條直線上。 TOC o 1-5 h z 根據(jù)動(dòng)量守恒定律有:m1V1 +m2V2 =m1V1 +m2V2(1)如果是完全非彈性碰撞,兩物體粘合在一起,(1 )則變?yōu)閙1V1 +m2V2 =(m1 +m2)V 即 V m1m2(2)m1 m2現(xiàn)在就是要證明,在滿足(1)式的碰撞中,動(dòng)能損失最大的情況是(2)式。碰撞中動(dòng)能損失為A Ek二(2 m1v1A Ek二(2 m1v122 m2v22-2、 尸15)一(三m2v22-2(3)轉(zhuǎn)變?yōu)閿?shù)學(xué)問題:A Ek為v的二次函數(shù)(4)由(1)得:v2/=(m1v1+m2V2-m1v1)(4)m2將(4)代入(3)得:
3、TOC o 1-5 h z -,、,、22,、2-(m1mb)、,2 .m1(m1v1m2V2)、,m1v1m2V2(m1v1m2V2)Ek=v1v1 2mm2222m2二次函數(shù)求極值(5) 時(shí)/ _(miv1 m2v2(5) 時(shí)3 Vi =(m1 m2) Ek有極大值?;氐轿锢韱栴},將(5)代入(4)彳導(dǎo)V2 =(miVl +m2v2)(mi m2)此兩式表明,mi和m2碰后速度相等,即粘合在一起,此時(shí)動(dòng)能損失(A Ek)最大。、 由公式(ab)2之0得a2 +b2之2ab1當(dāng)a =b時(shí),a +b有極小值2ab,若a=,此時(shí)極小值為2。b同理,ab同理,ab的極大值為例2 求彈性正碰中m1所
4、傳遞給m2的動(dòng)能最大或最小的條件。設(shè)一個(gè)質(zhì)量為 mi,動(dòng)能為Ek的物體與一個(gè)質(zhì)量為 m2的不動(dòng)的物體正碰,假定發(fā)生的是彈性碰撞,試討論 m1傳遞給m2動(dòng)能最大或最小的條件。設(shè)m設(shè)mi原來的速度為Vi,碰撞后兩物體的速度分別為Vi和V2 ,根據(jù)彈性正碰中的動(dòng)量守恒和動(dòng)能守恒,有方程組: TOC o 1-5 h z miVi = miVim2V2、,2 i、,2 i、,,miVimiVim2V2 HYPERLINK l bookmark52 o Current Document 22解此方程得: V = _ _m2 Vl,V; = 2mi Vimi m2mi m2mi傳遞給m2動(dòng)能,即為m2獲得的
5、動(dòng)能:Ek2m2V222i / 2mEk2m2V222i / 2mi2 m2(mTVi)4mim2(mi m2)2Ek?,F(xiàn)在求Ek?的極值條件和極值。4m,m2Ek21 22 Ekmi 2mlm2 m24mim2 HYPERLINK l bookmark54 o Current Document 22m2miEk當(dāng)mi= m2時(shí)*+U,2有極小值2,所以當(dāng)mi= m2時(shí),Ek2有極大值Ek,即mim2mi傳遞給m2動(dòng)能最大的條件是二者質(zhì)量相等。此時(shí)mi的全部動(dòng)能傳遞給 m2,也就是說:碰撞之后V:=0, V2=V1。這在物理學(xué)史上有一段趣聞,在成立不久的英國皇家學(xué)會的一次 例會上,一位工程師的
6、表演引起了與會者的極大興趣:兩個(gè)質(zhì)量相同的鋼球A和B,分別吊 TOC o 1-5 h z 在細(xì)繩上,靜止時(shí)緊靠在一起,使A球偏開一個(gè)角度后放開,它回到原來的位置時(shí)撞上B球,碰撞后A球靜止下來,B球擺到與A求原來高度幾乎相等的高度。惠斯通通過對此現(xiàn)象的研究和解釋中確定了動(dòng)能的定義。此問題可擴(kuò)大到第二個(gè)物體原來不靜止的情況。設(shè)m2碰前的速度為V2,則方程組變 mM m2V2 = mMm2V2為: 12 12 12 12,-m|V1 + - m 2 V 2 = m|V1 + - m 2 V 22222“力、, mi -m22m2其解為:V112Vl V2mh m2m1 m2V2 =mV1 mV2m1
7、 m2m1 m21,2 12 一 則AEk=Ek2 Ek2=m2V2 -m2V2,將V2的表達(dá)式代入此式,并且以 Ek 221. . 2 一 1. . 2代入一 m1V1 ,以Ek2代入一 m2V2 ,得: HYPERLINK l bookmark58 o Current Document 22讓卜=*1%位匕一卜2)-2mmsVW,當(dāng)m1= m2時(shí),因后項(xiàng)為 (m1 m2)(m1 m2)零,前項(xiàng)取最大值,故AEk取最大值。此時(shí),m1把原來m2多的那部分動(dòng)能全部傳遞給 m2。 三、三角函數(shù)求極值:三角函數(shù)y =sinx,當(dāng)x=0時(shí),y取最小值0,當(dāng)x=時(shí),y取最大值1, ( x在 23TJI0
8、到二范圍內(nèi)),同理,y=cosx,x=0時(shí),y取最大值1, x =二時(shí),y取最小值0。22例3 在傾角6=30O的斜面上,放置一個(gè)重量為 200牛頓的物體,物體與斜面間的滑3動(dòng)摩擦系數(shù)為N=,要使物體沿斜面勻速向上移動(dòng),所加的力至少要多大?方向如何?3設(shè)所加的外力F與斜面夾角為a,物體受力情況如圖所示。由于物體作勻速直線運(yùn)動(dòng),根據(jù)共點(diǎn)力的平衡條件,有方程組:工F cos a -m gsin 二-f =0 N F sin a -mgcos 1-0f = JN解此方程組,消去 N,得:mg(sin 二 cos 二) TOC o 1-5 h z F =,cos a + .:sin a因?yàn)镠為已知,故
9、分子為定值,分母是變量為a的三角函數(shù),令sin 二2 HYPERLINK l bookmark65 o Current Document sin 二2y =cosa :sin a f ,1 十:(cosa1 口2=1 - 2 2 (sin cos 工cos : sin a) = . 1 2 sin( : a).1 口其中,sin邛=, c o s =,即 tg中12.12當(dāng)a十中=900時(shí),即 a =90 中時(shí),y取最大值J1 + N2 , F最小值為mg誓c遺,由于4、3,即tg*5所以*60。將mg =200 N, ,1 23,30003 3 ,代入上式得:當(dāng) a =900 600 =30
10、0時(shí),F(xiàn)最小值為100J3n,約為3173N。四、導(dǎo)數(shù)法求極值:般的函數(shù)y = f(x),求一階導(dǎo)數(shù) y= f(x),令其為零時(shí)的x值X0,即為y取極值的條件;再求二階導(dǎo)數(shù)y=f (x),當(dāng)x = x0時(shí),若yA0,則上述極值為極小值;若y2)【解法2】用動(dòng)能定理解:在物塊 M下落過程中,設(shè)M落地時(shí)的速度大小為V ,0 L o 1根據(jù)動(dòng)能TE理 MgL sin 30 -mg -sin 30 = (M m)v2 ,將M =km代入,解得k-1v.UgL =2k -1 gL .在物塊M落地后, .2(k 1)小物塊m上滑到頂端的過程中,設(shè)m射出管口時(shí)速度大小為丫。,根據(jù)動(dòng)能定理:_ L 01212
11、 mgsin 30 = mv0-mv ,222/=解得2(1) o(3)平拋運(yùn)動(dòng)-Vu ,2x - Zj解得I k-2R*+1)因?yàn)榇? 1x - Zj解得I k-2R*+1)【注意】第(2)問中要分M落地前和落地后兩段計(jì)算,因?yàn)閮啥蔚募铀俣炔幌嗟?。在用?dòng)能定理時(shí),也要分兩個(gè)階段,有的同學(xué)企圖畢其功于一役,1與出動(dòng)能止理 MgLsin日一mgLsin日=&mv0 ,解得v0 = q(k-1)gL 是錯(cuò)塊的,錯(cuò) 誤的原因在于認(rèn)為M落地后速度為0,這個(gè)速度為0,是M與地面碰撞以后的結(jié) 果,并不是M下落和m上滑的結(jié)果。【點(diǎn)評】本題考查牛頓第二定律,勻加速運(yùn)動(dòng)的公式及平拋運(yùn)動(dòng)規(guī)律。難度:中 等偏難。例
12、4.水上滑梯可簡化成如圖所示的模型:傾角為8=37。斜?t道AB和水平滑道BC平滑連接(設(shè)經(jīng)過B點(diǎn)前后速度大小不變),起點(diǎn)A距水面白高度H=7.0m, BC 長d=2.0m,端點(diǎn)C距水面的高度h=1.0m. 一質(zhì)量m=50kg的運(yùn)動(dòng)員從滑道起點(diǎn) A 無初速地自由滑下,運(yùn)動(dòng)員與 AB BC間的動(dòng)摩擦因數(shù)均為 仙=0.1.(取重力加 速度g=10m/s2, sin37 0 =0.6, cos37 =0.8,運(yùn)動(dòng)員在運(yùn)動(dòng)過程中可視為質(zhì)點(diǎn))(1)求運(yùn)動(dòng)員沿AB下滑時(shí)加速度的大小a;(2)求運(yùn)動(dòng)員從A滑到C的過程中克服摩擦力所做的功 Wft到達(dá)C點(diǎn)時(shí)速度的 大小v;(3)保持水平滑道端點(diǎn)在同一豎直線上,
13、調(diào)節(jié)水平滑道高度 h和長度d到圖中 B C位置時(shí),運(yùn)動(dòng)員從滑梯平拋到水面的水平位移最大,求此時(shí)滑道 B C距水面的高度h【解析】運(yùn)動(dòng)員沿AB下滑時(shí),受力情況如圖所示Ff= n F n= n mgcosO根據(jù)牛頓第二定律: mgsin日-n mgcosO =ma得運(yùn)動(dòng)員沿AB下滑時(shí)加速度的大小為:2a=gsin 0 - n gcos 0 =5.2 m/s(2)運(yùn)動(dòng)員從A滑到C的過程中,克服摩擦力做功為:W= n mgcosOH-h+ n mgd即 mgd+( H-hsin 二cot 9 = 0.1X50X10X x 10=500J由動(dòng)能定理得:mg (H-h) -Wf= 1 mV2解得運(yùn)動(dòng)員滑到
14、C點(diǎn)時(shí)速度的大小v=10m/s(3)在從C點(diǎn)滑出至落到水面的過程中,運(yùn)動(dòng)員做平拋運(yùn)動(dòng)的時(shí)間為t ,1. 1. 2h = 2gt , t=下滑過程中克服摩擦做功保持不變 W=500J1. 2根據(jù)動(dòng)能止理得:mg (H-h ) -Wf=- mv ,解得 v =J2g(H 1 h)運(yùn)動(dòng)員在水平方向的位移:x=v t J2g(H 1-h) J2144(H 1-h)h2【解法1】配方法:令y =(H -1-h)h= .(h .吐)2 (H 一1)24當(dāng)h = H 1 -3m時(shí),水平位移最大為x = 6m。2【解法 2】求導(dǎo)法:令 y = (H 1-h)h=h2+(H 1)h,求導(dǎo) y(h)= -2h+H
15、 -1,H -1當(dāng)h =3m時(shí),水平包移取大為 x = 6m。2答:(1)運(yùn)動(dòng)員沿AB下滑時(shí)加速度的大小a為5.2m/s2;(2)運(yùn)動(dòng)員從A滑至U C的過程中克服摩擦力所做的功 W為500J,到達(dá)C點(diǎn)時(shí)速度的大小為10m/s;(3)滑道B C距水面的高度h為3m【注意】為什么說下滑過程中克服摩擦做功保持不變呢?因?yàn)榭朔Σ磷龉=n mgcosO L +仙mgd卻mgLcos + +d,其大小只與水平方向的總長度有 關(guān),而與水平滑道高度h無關(guān)。歸納總結(jié):平拋運(yùn)動(dòng)中的極值問題,一般解法如下:首先根據(jù)平拋運(yùn)動(dòng)分解的原理列出平拋運(yùn)動(dòng)的方程:x = V0t, y =1gt2,然2后根據(jù)其它條件結(jié)合以上
16、兩個(gè)公式,把物理問題轉(zhuǎn)化為求極值的數(shù)學(xué)問題。 之后,用數(shù)學(xué)方法求極值。方法1 :配方法。對形如y = ax2 - bx + c的二次函數(shù),配方為 TOC o 1-5 h z HYPERLINK l bookmark118 o Current Document 22/ b、2 4ac -bb4ac-by=a(x) +,則當(dāng) x= 一 時(shí),y有取小值 ymin =。 HYPERLINK l bookmark173 o Current Document 2a 4a2a4a方法2:求導(dǎo)法。對形如y=ax2 -bx+c的二次函數(shù),求其導(dǎo)數(shù)y(x) = 2ax-b,令其等于0,得當(dāng)x=應(yīng)時(shí),代入得y的最小
17、值丫.訪=念主。2a4a最后探究極值的物理意義,把數(shù)學(xué)問題回歸到物理問題。六、小船渡河問題位移最小問題。設(shè)河寬為d,小船在靜水中的速度為 V船,水流速度為V水,小船如何渡河到達(dá)對岸的位移最小,最小位移是多少?分兩種情況研究:(1)當(dāng)V船AV水時(shí)【解析】求位移最小問題。在小船渡河過程中,將船對水的速度沿平行河岸方向和垂直河岸方向正交分解,如圖 2。當(dāng)小船沿平行河岸方向的分速度與水速大小相等,方向相反 TOC o 1-5 h z 時(shí),即M=V水,小船的合速度(V2)就沿垂直河岸方向,這時(shí)渡河到達(dá)對岸的位移最小,Sm產(chǎn)d。而渡河時(shí)間t= = d一。v2vsin1圖2河寬60m,小船在靜水中的速度為
18、5m/s,水流速度為3m/s。求小船渡河的最小位移是 多少,小船實(shí)際渡河的時(shí)間為多大?【解析】如圖2,當(dāng)小船沿平行河岸方向的分速度V1=V水,小船要垂直河岸方向渡河,這時(shí)渡河到達(dá)對岸的位移最小,Smin=d=60(m)。而V船與河岸的夾角。=arccos(V水/V船)二530。這時(shí)小船實(shí)際渡河的時(shí)間 t=d/V 2=d/ (V船sin 0) =60/4=15(s).(2)當(dāng)v船v水時(shí),設(shè)河寬60m,小船在靜水中的速度 3m/s,水流速度5m/s。求小船 渡河的最小位移是多少,小船實(shí)際渡河的時(shí)間為多大?【解析】因?yàn)椴徽摯暮较蛉绾?,船速在平行河岸方向上的分速度不能把水速平衡掉?所以船總是被水沖向下游,那么怎樣才能使漂下的距離最短呢?如圖3所示,設(shè)船頭v船與河岸成。角。合速度 v與河岸成“角。可以看出:a角越大,船 漂下的距離X越短,那么,在什么條件下a角最大呢?以船的出發(fā)點(diǎn)A為起點(diǎn)沿河岸做v水的速度矢量,以v水的矢端。為圓心,v船為半徑畫圓,當(dāng)v合與圓相切(切點(diǎn)為 C)時(shí),E角最大,設(shè)船頭方向(與 OC平行)與河岸的夾角為 日,則cos3 =藝Rou AvRou Av A設(shè)船沿河漂下的最短距離為 x,渡河的最短位移為 s
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四年級數(shù)學(xué)口算測試
- 四年級上冊口算計(jì)算能力競賽題
- 飲食店長工作要點(diǎn)計(jì)劃月歷表(33篇)
- 2025年四川貨運(yùn)b2從業(yè)資格證考試卷
- 2025至2030年中國管材靜液壓試驗(yàn)機(jī)數(shù)據(jù)監(jiān)測研究報(bào)告
- 2025至2030年中國坐式推力器數(shù)據(jù)監(jiān)測研究報(bào)告
- 2025年中國三合一麥片市場調(diào)查研究報(bào)告
- 2025年中國72件套餐具植絨包裝盒市場調(diào)查研究報(bào)告
- 2025至2031年中國原料毛行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國沙漠氣象站數(shù)據(jù)監(jiān)測研究報(bào)告
- 江蘇省蘇州市2024-2025學(xué)年高三上學(xué)期1月期末生物試題(有答案)
- 銷售與銷售目標(biāo)管理制度
- 特殊教育學(xué)校2024-2025學(xué)年度第二學(xué)期教學(xué)工作計(jì)劃
- 2025年技術(shù)員個(gè)人工作計(jì)劃例文(四篇)
- 2025年第一次工地開工會議主要議程開工大吉模板
- 第16課抗日戰(zhàn)爭課件-人教版高中歷史必修一
- 對口升學(xué)語文模擬試卷(9)-江西省(解析版)
- 無人機(jī)運(yùn)營方案
- 糖尿病高滲昏迷指南
- 【公開課】同一直線上二力的合成+課件+2024-2025學(xué)年+人教版(2024)初中物理八年級下冊+
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計(jì)規(guī)范
評論
0/150
提交評論