2022學(xué)年湖南名師聯(lián)盟高考數(shù)學(xué)二模試卷(含解析)_第1頁
2022學(xué)年湖南名師聯(lián)盟高考數(shù)學(xué)二模試卷(含解析)_第2頁
2022學(xué)年湖南名師聯(lián)盟高考數(shù)學(xué)二模試卷(含解析)_第3頁
2022學(xué)年湖南名師聯(lián)盟高考數(shù)學(xué)二模試卷(含解析)_第4頁
2022學(xué)年湖南名師聯(lián)盟高考數(shù)學(xué)二模試卷(含解析)_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2022學(xué)年高考數(shù)學(xué)模擬測(cè)試卷請(qǐng)考生注意:1請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1在中,角的對(duì)邊分別為,若,則的形狀為( )A直角三角形B等腰非等邊三角形C等腰或直角三角形D鈍角三角形2已知函數(shù),若函數(shù)的圖象恒在軸的上方,則實(shí)數(shù)的取值范圍為( )ABCD3已知實(shí)數(shù),則的大小關(guān)系是()ABCD4函數(shù)在上的最大值和最小值分別為(

2、)A,-2B,-9C-2,-9D2,-25函數(shù)的單調(diào)遞增區(qū)間是( )ABCD6已知函數(shù)則函數(shù)的圖象的對(duì)稱軸方程為( )ABCD7設(shè)數(shù)列是等差數(shù)列,.則這個(gè)數(shù)列的前7項(xiàng)和等于( )A12B21C24D368已知復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則下列結(jié)論正確的是( )AB復(fù)數(shù)的共軛復(fù)數(shù)是CD9如圖,在四邊形中,則的長(zhǎng)度為( )ABCD10已知雙曲線的左,右焦點(diǎn)分別為、,過的直線l交雙曲線的右支于點(diǎn)P,以雙曲線的實(shí)軸為直徑的圓與直線l相切,切點(diǎn)為H,若,則雙曲線C的離心率為( )ABCD11已知六棱錐各頂點(diǎn)都在同一個(gè)球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,則球

3、的表面積為( )ABCD12在正方體中,分別為,的中點(diǎn),則異面直線,所成角的余弦值為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13若函數(shù)為偶函數(shù),則 14某部隊(duì)在訓(xùn)練之余,由同一場(chǎng)地訓(xùn)練的甲乙丙三隊(duì)各出三人,組成小方陣開展游戲,則來自同一隊(duì)的戰(zhàn)士既不在同一行,也不在同一列的概率為_.15在的二項(xiàng)展開式中,x的系數(shù)為_(用數(shù)值作答)16 “六藝”源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”某校在周末學(xué)生業(yè)余興趣活動(dòng)中開展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為_三、解答題:共

4、70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,在三棱錐中,平面平面,.點(diǎn),分別為線段,的中點(diǎn),點(diǎn)是線段的中點(diǎn).(1)求證:平面.(2)判斷與平面的位置關(guān)系,并證明.18(12分)如圖,四棱錐EABCD的側(cè)棱DE與四棱錐FABCD的側(cè)棱BF都與底面ABCD垂直,/,.(1)證明:/平面BCE. (2)設(shè)平面ABF與平面CDF所成的二面角為,求.19(12分)新高考,取消文理科,實(shí)行“”,成績(jī)由語文、數(shù)學(xué)、外語統(tǒng)一高考成績(jī)和自主選考的3門普通高中學(xué)業(yè)水平考試等級(jí)性考試科目成績(jī)構(gòu)成.為了解各年齡層對(duì)新高考的了解情況,隨機(jī)調(diào)查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調(diào)

5、查結(jié)果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計(jì)中青年和中老年對(duì)新高考了解的概率;(2)請(qǐng)根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對(duì)新高考的了解與年齡(中青年、中老年)有關(guān)?了解新高考不了解新高考總計(jì)中青年中老年總計(jì)附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調(diào)查者中隨機(jī)選取3人進(jìn)行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.20(12分)在平面直角坐標(biāo)系中,已知橢圓的短軸長(zhǎng)為,直線與橢圓相交于兩點(diǎn),線段的中點(diǎn)為.當(dāng)與連線的斜率為時(shí),直線的傾斜角為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若是以為直徑的圓上的任意

6、一點(diǎn),求證:21(12分)已知在平面四邊形中,的面積為.(1)求的長(zhǎng);(2)已知,為銳角,求.22(10分)已知函數(shù),.函數(shù)的導(dǎo)函數(shù)在上存在零點(diǎn).求實(shí)數(shù)的取值范圍;若存在實(shí)數(shù),當(dāng)時(shí),函數(shù)在時(shí)取得最大值,求正實(shí)數(shù)的最大值;若直線與曲線和都相切,且在軸上的截距為,求實(shí)數(shù)的值.2022學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【答案解析】利用正弦定理將邊化角,再由,化簡(jiǎn)可得,最后分類討論可得;【題目詳解】解:因?yàn)樗运运运运援?dāng)時(shí),為直角三角形;當(dāng)時(shí)即,為等腰三角形;的形狀是等腰三角形或直角三

7、角形故選:【答案點(diǎn)睛】本題考查三角形形狀的判斷,考查正弦定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題2、B【答案解析】函數(shù)的圖象恒在軸的上方,在上恒成立.即,即函數(shù)的圖象在直線上方,先求出兩者相切時(shí)的值,然后根據(jù)變化時(shí),函數(shù)的變化趨勢(shì),從而得的范圍【題目詳解】由題在上恒成立.即,的圖象永遠(yuǎn)在的上方,設(shè)與的切點(diǎn),則,解得,易知越小,圖象越靠上,所以.故選:B【答案點(diǎn)睛】本題考查函數(shù)圖象與不等式恒成立的關(guān)系,考查轉(zhuǎn)化與化歸思想,首先函數(shù)圖象轉(zhuǎn)化為不等式恒成立,然后不等式恒成立再轉(zhuǎn)化為函數(shù)圖象,最后由極限位置直線與函數(shù)圖象相切得出參數(shù)的值,然后得出參數(shù)范圍3、B【答案解析】根據(jù),利用指數(shù)函數(shù)對(duì)

8、數(shù)函數(shù)的單調(diào)性即可得出【題目詳解】解:,故選:B【答案點(diǎn)睛】本題考查了指數(shù)函數(shù)對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題4、B【答案解析】由函數(shù)解析式中含絕對(duì)值,所以去絕對(duì)值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【題目詳解】依題意,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時(shí),有最大值,當(dāng)時(shí),有最小值.故選:B.【答案點(diǎn)睛】本題考查了絕對(duì)值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.5、D【答案解析】利用輔助角公式,化簡(jiǎn)函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【題目詳解】因?yàn)?,由,解得,即函?shù)的增區(qū)間為,所以當(dāng)時(shí),增區(qū)間的一個(gè)子集為.故

9、選D.【答案點(diǎn)睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點(diǎn)在于把握正弦函數(shù)的單調(diào)性,同時(shí)對(duì)于整體法的應(yīng)用,使問題化繁為簡(jiǎn),難度較易.6、C【答案解析】,將看成一個(gè)整體,結(jié)合的對(duì)稱性即可得到答案.【題目詳解】由已知,令,得.故選:C.【答案點(diǎn)睛】本題考查余弦型函數(shù)的對(duì)稱性的問題,在處理余弦型函數(shù)的性質(zhì)時(shí),一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.7、B【答案解析】根據(jù)等差數(shù)列的性質(zhì)可得,由等差數(shù)列求和公式可得結(jié)果.【題目詳解】因?yàn)閿?shù)列是等差數(shù)列,所以,即,又,所以,故故選:B【答案點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,性質(zhì),等差數(shù)列的和,屬于中檔題.8、D【答案解析】首

10、先求得,然后根據(jù)復(fù)數(shù)乘法運(yùn)算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運(yùn)算對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【題目詳解】由題意知復(fù)數(shù),則,所以A選項(xiàng)不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項(xiàng)不正確;,所以C選項(xiàng)不正確;,所以D選項(xiàng)正確.故選:D【答案點(diǎn)睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運(yùn)算等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想.9、D【答案解析】設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【題目詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【答案點(diǎn)睛】本題主要考查正弦定理

11、和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.10、A【答案解析】在中,由余弦定理,得到,再利用即可建立的方程.【題目詳解】由已知,在中,由余弦定理,得,又,所以,故選:A.【答案點(diǎn)睛】本題考查雙曲線離心率的計(jì)算問題,處理雙曲線離心率問題的關(guān)鍵是建立三者間的關(guān)系,本題是一道中檔題.11、D【答案解析】由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【題目詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以, 在直角中,因?yàn)?,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以

12、外接球的表面積為.故選:D.【答案點(diǎn)睛】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計(jì)算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于中檔試題.12、D【答案解析】連接,因?yàn)?,所以為異面直線與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長(zhǎng)為2,取的中點(diǎn)為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【題目詳解】連接,因?yàn)椋詾楫惷嬷本€與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長(zhǎng)為2,則,在等腰中,取的中點(diǎn)為,連接,則,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【答案點(diǎn)睛】本題考查空間異面

13、直線的夾角余弦值,利用了正方體的性質(zhì)和二倍角公式,還考查空間思維和計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、1【答案解析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),考點(diǎn):函數(shù)的奇偶性【方法點(diǎn)晴】本題考查導(dǎo)函數(shù)的奇偶性以及邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力、特殊與一般思想、數(shù)形結(jié)合思想與轉(zhuǎn)化思想,具有一定的綜合性和靈活性,屬于較難題型首先利用轉(zhuǎn)化思想,將函數(shù)為偶函數(shù)轉(zhuǎn)化為 函數(shù)為奇函數(shù),然后再利用特殊與一般思想,取14、【答案解析】分兩步進(jìn)行:首先,先排第一行,再排第二行,最后排第三行;其次,對(duì)每一行選人;最后,利用計(jì)算出概率即可.【題目詳解】首先,第一行隊(duì)伍的排法有種;

14、第二行隊(duì)伍的排法有2種;第三行隊(duì)伍的排法有1種;然后,第一行的每個(gè)位置的人員安排有種;第二行的每個(gè)位置的人員安排有種;第三行的每個(gè)位置的人員安排有種.所以來自同一隊(duì)的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.【答案點(diǎn)睛】本題考查了分步計(jì)數(shù)原理,排列與組合知識(shí),考查了轉(zhuǎn)化能力,屬于中檔題.15、-40【答案解析】由題意,可先由公式得出二項(xiàng)展開式的通項(xiàng),再令10-3r=1,得r=3即可得出x項(xiàng)的系數(shù)【題目詳解】的二項(xiàng)展開式的通項(xiàng)公式為,r=0,1,2,3,4,5,令,所以的二項(xiàng)展開式中x項(xiàng)的系數(shù)為.故答案為:-40.【答案點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,解題關(guān)鍵是靈活掌握二項(xiàng)式展開式通項(xiàng)的

15、公式,屬于基礎(chǔ)題.16、【答案解析】分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個(gè)元素與其它兩個(gè)元素合起來全排列,同時(shí)它們內(nèi)部也全排列【題目詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為故答案為:1【答案點(diǎn)睛】本題考查排列的應(yīng)用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(

16、2)平面.見解析【答案解析】(1)要證平面,只需證明,即可求得答案;(2)連接交于點(diǎn),連接,根據(jù)已知條件求證,即可判斷與平面的位置關(guān)系,進(jìn)而求得答案.【題目詳解】(1),為邊的中點(diǎn),平面平面,平面平面,平面,平面,在內(nèi),為所在邊的中點(diǎn),又,平面.(2)判斷可知,平面,證明如下:連接交于點(diǎn),連接.、分別為邊、的中點(diǎn),.又是的重心,平面,平面,平面.【答案點(diǎn)睛】本題主要考查了求證線面垂直和線面平行,解題關(guān)鍵是掌握線面垂直判定定理和線面平行判斷定理,考查了分析能力和空間想象能力,屬于中檔題.18、(1)證明見解析(2)【答案解析】(1)根據(jù)線面垂直的性質(zhì)定理,可得DE/BF,然后根據(jù)勾股定理計(jì)算可得

17、BFDE,最后利用線面平行的判定定理,可得結(jié)果.(2)利用建系的方法,可得平面ABF的一個(gè)法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關(guān)系,可得結(jié)果.【題目詳解】(1)因?yàn)镈E平面ABCD,所以DEAD,因?yàn)锳D4,AE5,DE3,同理BF3,又DE平面ABCD,BF平面ABCD,所以DE/BF,又BFDE,所以平行四邊形BEDF,故DF/BE,因?yàn)锽E平面BCE,DF平面BCE所以DF/平面BCE;(2)建立如圖空間直角坐標(biāo)系,則D(0,0,0),A(4,0,0),C(0,4,0),F(xiàn)(4,3,3), 設(shè)平面CDF的法向量為,由,令x3,得,易知平面ABF的一個(gè)法向量為,所

18、以,故.【答案點(diǎn)睛】本題考查線面平行的判定以及利用建系方法解決面面角問題,屬基礎(chǔ)題.19、(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關(guān)聯(lián);(3)分布列見解析,.【答案解析】(1)分別求出中青年、中老年對(duì)高考了解的頻數(shù),即可求出概率;(2)根據(jù)數(shù)據(jù)列出列聯(lián)表,求出的觀測(cè)值,對(duì)照表格,即可得出結(jié)論;(3)年齡在的被調(diào)查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機(jī)變量分布列,根據(jù)期望公式即可求解.【題目詳解】(1)由題中數(shù)據(jù)可知,中青年對(duì)新高考了解的概率,中老年對(duì)新高考了解的概率.(2)列聯(lián)表如圖所示了解新高考不了解新高考總計(jì)中青年

19、22830老年81220總計(jì)302050,所以有95%的把握判斷了解新高考與年齡(中青年、中老年)有關(guān)聯(lián).(3)年齡在的被調(diào)查者共5人,其中了解新高考的有2人,則抽取的3人中了解新高考的人數(shù)可能取值為0,1,2,則;.所以的分布列為012.【答案點(diǎn)睛】本題考查概率、獨(dú)立性檢驗(yàn)及隨機(jī)變量分布列和期望,考查計(jì)算求解能力,屬于基礎(chǔ)題.20、(1);(2)詳見解析.【答案解析】(1)由短軸長(zhǎng)可知,設(shè),由設(shè)而不求法作差即可求得,將相應(yīng)值代入即求得,橢圓方程可求;(2)考慮特殊位置,即直線與軸垂直時(shí)候,成立,當(dāng)直線斜率存在時(shí),設(shè)出直線方程,與橢圓聯(lián)立,結(jié)合中點(diǎn)坐標(biāo)公式,弦長(zhǎng)公式,得到與的關(guān)系,將表示出來,結(jié)合基本不等式求最值,證明最后的結(jié)果【題目詳解】解:(1)由已知,得由,兩式相減,得根據(jù)已知條件有,當(dāng)時(shí),即橢圓的標(biāo)準(zhǔn)方程為(2)當(dāng)直線斜率不存在時(shí),不等式成立.當(dāng)直線斜率存在時(shí),設(shè)由得,由化簡(jiǎn),得令,則當(dāng)且僅當(dāng)時(shí)取等號(hào)當(dāng)且僅當(dāng)時(shí)取等號(hào)綜上,【答案點(diǎn)睛】本題為直線與橢圓的綜合應(yīng)用,考查了橢圓方程的求法,點(diǎn)差法處理多未知量問題,能夠利用一元二次方程的知識(shí)轉(zhuǎn)化處理復(fù)雜的計(jì)算形式,要求學(xué)生計(jì)算能力過關(guān),為較難題21、(1);(2)4.【答案解析】(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論