黑龍江省佳木斯重點(diǎn)2021-2022學(xué)年高考仿真卷數(shù)學(xué)試題含解析_第1頁(yè)
黑龍江省佳木斯重點(diǎn)2021-2022學(xué)年高考仿真卷數(shù)學(xué)試題含解析_第2頁(yè)
黑龍江省佳木斯重點(diǎn)2021-2022學(xué)年高考仿真卷數(shù)學(xué)試題含解析_第3頁(yè)
黑龍江省佳木斯重點(diǎn)2021-2022學(xué)年高考仿真卷數(shù)學(xué)試題含解析_第4頁(yè)
黑龍江省佳木斯重點(diǎn)2021-2022學(xué)年高考仿真卷數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1函數(shù)(其中,)的圖象如圖,則此函數(shù)表達(dá)式為( )ABCD2已知等比數(shù)列的前項(xiàng)和為,若,且公比為2,則與的關(guān)系正確的是( )ABCD3點(diǎn)是單位圓上不同的三點(diǎn),線段與線段交于圓內(nèi)一點(diǎn)M,若,則的最小值為( ) ABCD4已知點(diǎn),若點(diǎn)在曲線上

2、運(yùn)動(dòng),則面積的最小值為( )A6B3CD52019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國(guó)其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無(wú)法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對(duì)其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測(cè),若出現(xiàn)陽(yáng)性,則該家庭為“

3、感染高危戶”.設(shè)該家庭每個(gè)成員檢測(cè)呈陽(yáng)性的概率均為()且相互獨(dú)立,該家庭至少檢測(cè)了5個(gè)人才能確定為“感染高危戶”的概率為,當(dāng)時(shí),最大,則( )ABCD6已知集合,集合,則等于( )ABCD7函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象( )A向右平移個(gè)單位B向右平移個(gè)單位C向左平移個(gè)單位D向左平移個(gè)單位8已知函數(shù),給出下列四個(gè)結(jié)論:函數(shù)的值域是;函數(shù)為奇函數(shù);函數(shù)在區(qū)間單調(diào)遞減;若對(duì)任意,都有成立,則的最小值為;其中正確結(jié)論的個(gè)數(shù)是( )ABCD9在區(qū)間上隨機(jī)取一個(gè)實(shí)數(shù),使直線與圓相交的概率為( )ABCD10一個(gè)組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長(zhǎng)為1),則該幾何體的體積是( )

4、ABCD11ABC的內(nèi)角A,B,C的對(duì)邊分別為,已知,則為( )ABC或D或122019年10月1日,中華人民共和國(guó)成立70周年,舉國(guó)同慶.將2,0,1,9,10這5個(gè)數(shù)字按照任意次序排成一行,拼成一個(gè)6位數(shù),則產(chǎn)生的不同的6位數(shù)的個(gè)數(shù)為A96B84C120D360二、填空題:本題共4小題,每小題5分,共20分。13已知多項(xiàng)式滿足,則_,_14某種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,且某用戶購(gòu)買了件這種產(chǎn)品,則這件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間之外的產(chǎn)品件數(shù)為_15已知函數(shù),若關(guān)于的方程在定義域上有四個(gè)不同的解,則實(shí)數(shù)的取值范圍是_.16已知數(shù)列滿足,則_三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程

5、或演算步驟。17(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.18(12分)本小題滿分14分)已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),求直線被曲線截得的線段的長(zhǎng)度19(12分)已知函數(shù).(1)若,求證:.(2)討論函數(shù)的極值;(3)是否存在實(shí)數(shù),使得不等式在上恒成立?若存在,求出的最小值;若不存在,請(qǐng)說(shuō)明理由.20(12分)在四棱錐中,是等邊三角形,點(diǎn)在棱上,平面平面(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設(shè)直線與平面相交于點(diǎn),若,求的值21(12分)已知數(shù)列的通項(xiàng),數(shù)列為等比數(shù)

6、列,且,成等差數(shù)列.(1)求數(shù)列的通項(xiàng);(2)設(shè),求數(shù)列的前項(xiàng)和.22(10分)為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個(gè)的偶數(shù)個(gè)十字路口,記為,現(xiàn)規(guī)劃在每個(gè)路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性;(2)若從所有的路口中隨機(jī)抽取4個(gè)路口,恰有個(gè)路口種植楊樹,求的分布列以及數(shù)學(xué)期望;(3)在所有的路口種植完成后,選取3個(gè)種植同一種樹的

7、路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.828參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】由圖象的頂點(diǎn)坐標(biāo)求出,由周期求出,通過(guò)圖象經(jīng)過(guò)點(diǎn),求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,則,圖中的點(diǎn)應(yīng)對(duì)應(yīng)正弦曲線中的點(diǎn),所以,解得,故函數(shù)表達(dá)式為故選:B.【點(diǎn)睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識(shí);考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.2C【解析】在等比數(shù)列中,由即可表示之間的關(guān)系.【詳解】由題可知,等比

8、數(shù)列中,且公比為2,故故選:C【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,屬于基礎(chǔ)題.3D【解析】由題意得,再利用基本不等式即可求解【詳解】將平方得,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),的最小值為,故選:D【點(diǎn)睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題4B【解析】求得直線的方程,畫出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點(diǎn)到直線的距離公式和兩點(diǎn)的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點(diǎn)為圓心,1為半徑的下半圓(包括兩個(gè)端點(diǎn)),如圖,直線的方程為,可得,由圓與直線的位置關(guān)系知在時(shí),到直線距離最短,即為,則的面積的最小值為.故選:B.【點(diǎn)睛】本題考查

9、三角形面積最值,解題關(guān)鍵是掌握直線與圓的位置關(guān)系,確定半圓上的點(diǎn)到直線距離的最小值,這由數(shù)形結(jié)合思想易得5A【解析】根據(jù)題意分別求出事件A:檢測(cè)5個(gè)人確定為“感染高危戶”發(fā)生的概率和事件B:檢測(cè)6個(gè)人確定為“感染高危戶”發(fā)生的概率,即可得出的表達(dá)式,再根據(jù)基本不等式即可求出.【詳解】設(shè)事件A:檢測(cè)5個(gè)人確定為“感染高危戶”,事件B:檢測(cè)6個(gè)人確定為“感染高危戶”,.即設(shè),則當(dāng)且僅當(dāng)即時(shí)取等號(hào),即.故選:A【點(diǎn)睛】本題主要考查概率的計(jì)算,涉及相互獨(dú)立事件同時(shí)發(fā)生的概率公式的應(yīng)用,互斥事件概率加法公式的應(yīng)用,以及基本不等式的應(yīng)用,解題關(guān)鍵是對(duì)題意的理解和事件的分解,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和數(shù)學(xué)

10、建模能力,屬于較難題.6B【解析】求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點(diǎn)睛】該題考查的是有關(guān)集合的運(yùn)算的問題,涉及到的知識(shí)點(diǎn)有一元二次不等式的解法,集合的運(yùn)算,屬于基礎(chǔ)題目.7C【解析】根據(jù)正弦型函數(shù)的圖象得到,結(jié)合圖像變換知識(shí)得到答案.【詳解】由圖象知:,.又時(shí)函數(shù)值最大,所以.又,從而,只需將的圖象向左平移個(gè)單位即可得到的圖象,故選C.【點(diǎn)睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對(duì)應(yīng)的特殊點(diǎn)求,一般用最高點(diǎn)或最低點(diǎn)求8C【解析】化的解析式為可判斷,求出的解析式可判斷,由得,結(jié)合正弦函數(shù)得圖象即可判斷,由得可判斷.【詳解

11、】由題意,所以,故正確;為偶函數(shù),故錯(cuò)誤;當(dāng)時(shí),單調(diào)遞減,故正確;若對(duì)任意,都有成立,則為最小值點(diǎn),為最大值點(diǎn),則的最小值為,故正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的綜合運(yùn)用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.9D【解析】利用直線與圓相交求出實(shí)數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點(diǎn)睛】本題考查幾何概型概率的計(jì)算,同時(shí)也考查了利用直線與圓相交求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.10C【解析】根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個(gè)三棱柱,從

12、而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個(gè)底面半徑為1的圓、高為2的圓柱中挖去一個(gè)底面腰長(zhǎng)為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點(diǎn)睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關(guān)鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結(jié)構(gòu)求出其體積.11D【解析】由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點(diǎn)睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.12B【解析】2,0,1,9,10按照任意次序排成一行,得所有

13、不以0開頭的排列數(shù)共個(gè),其中含有2個(gè)10的排列數(shù)共個(gè),所以產(chǎn)生的不同的6位數(shù)的個(gè)數(shù)為.故選B二、填空題:本題共4小題,每小題5分,共20分。13 【解析】多項(xiàng)式 滿足令,得,則該多項(xiàng)式的一次項(xiàng)系數(shù)為令,得故答案為5,7214【解析】直接計(jì)算,可得結(jié)果.【詳解】由題可知:則質(zhì)量指標(biāo)值位于區(qū)間之外的產(chǎn)品件數(shù):故答案為:【點(diǎn)睛】本題考查正太分布中原則,審清題意,簡(jiǎn)單計(jì)算,屬基礎(chǔ)題.15【解析】由題意可在定義域上有四個(gè)不同的解等價(jià)于關(guān)于原點(diǎn)對(duì)稱的函數(shù)與函數(shù)的圖象有兩個(gè)交點(diǎn),運(yùn)用參變分離和構(gòu)造函數(shù),進(jìn)而借助導(dǎo)數(shù)分析單調(diào)性與極值,畫出函數(shù)圖象,即可得到所求范圍.【詳解】已知定義在上的函數(shù)若在定義域上有四個(gè)

14、不同的解等價(jià)于關(guān)于原點(diǎn)對(duì)稱的函數(shù)與函數(shù)f(x)=lnx-x(x0)的圖象有兩個(gè)交點(diǎn),聯(lián)立可得有兩個(gè)解,即可設(shè),則,進(jìn)而且不恒為零,可得在單調(diào)遞增.由可得時(shí),單調(diào)遞減;時(shí),單調(diào)遞增,即在處取得極小值且為作出的圖象,可得時(shí),有兩個(gè)解.故答案為:【點(diǎn)睛】本題考查利用利用導(dǎo)數(shù)解決方程的根的問題,還考查了等價(jià)轉(zhuǎn)化思想與函數(shù)對(duì)稱性的應(yīng)用,屬于難題.16【解析】項(xiàng)和轉(zhuǎn)化可得,討論是否滿足,分段表示即得解【詳解】當(dāng)時(shí),由已知,可得,故,由-得,顯然當(dāng)時(shí)不滿足上式,故答案為:【點(diǎn)睛】本題考查了利用求,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算,分類討論的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證

15、明過(guò)程或演算步驟。17(1)整數(shù)的最大值為;(2)見解析.【解析】(1)將不等式變形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,令,對(duì)恒成立,所以,函數(shù)在上單調(diào)遞增,故存在使得,即,從而當(dāng)時(shí),有,所以,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),有,所以,函數(shù)在上單調(diào)遞減.所以,因此,整數(shù)的最大值為;(2)由(1)知恒成立,令則,上述等式全部相加得,所以,因此,【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性、最值中的應(yīng)用,以及放縮法證明不等式的技巧,屬于難題18【解析】解:解:將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程為

16、,即,它表示以為圓心,2為半徑圓, 4分直線方程的普通方程為, 8分圓C的圓心到直線l的距離,10分故直線被曲線截得的線段長(zhǎng)度為14分19(1)證明見解析;(2)見解析;(3)存在,1.【解析】(1),求出單調(diào)區(qū)間,進(jìn)而求出,即可證明結(jié)論;(2)對(duì)(或)是否恒成立分類討論,若恒成立,沒有極值點(diǎn),若不恒成立,求出的解,即可求出結(jié)論;(3)令,可證恒成立,而,由(2)得,在為減函數(shù),在上單調(diào)遞減,在都存在,不滿足,當(dāng)時(shí),設(shè),且,只需求出在單調(diào)遞增時(shí)的取值范圍即可.【詳解】(1),當(dāng)時(shí),當(dāng)時(shí),故.(2)由題知,當(dāng)時(shí),所以在上單調(diào)遞減,沒有極值;當(dāng)時(shí),得,當(dāng)時(shí),;當(dāng)時(shí),所以在上單調(diào)遞減,在上單調(diào)遞增.

17、故在處取得極小值,無(wú)極大值.(3)不妨令,設(shè)在恒成立,在單調(diào)遞增,在恒成立,所以,當(dāng)時(shí),由(2)知,當(dāng)時(shí),在上單調(diào)遞減,恒成立;所以不等式在上恒成立,只能.當(dāng)時(shí),由(1)知在上單調(diào)遞減,所以,不滿足題意.當(dāng)時(shí),設(shè),因?yàn)椋?,即,所以在上單調(diào)遞增,又,所以時(shí),恒成立,即恒成立,故存在,使得不等式在上恒成立,此時(shí)的最小值是1.【點(diǎn)睛】本題考查導(dǎo)數(shù)綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、極值最值、不等式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.20(1)證明見解析(2)(3)【解析】(1)取中點(diǎn)為,連接,由等邊三角形性質(zhì)可得,再由面面垂直的性質(zhì)可得,根據(jù)平行直線的性質(zhì)可得

18、,進(jìn)而求證;(2)以為原點(diǎn),過(guò)作的平行線,分別以,分別為軸,軸,軸建立空間直角坐標(biāo)系,設(shè),由點(diǎn)在棱上,可設(shè),即可得到,再求得平面的法向量,進(jìn)而利用數(shù)量積求解;(3)設(shè),則,求得,即可求得點(diǎn)的坐標(biāo),再由與平面的法向量垂直,進(jìn)而求解.【詳解】(1)證明:取中點(diǎn)為,連接,因?yàn)槭堑冗吶切?所以,因?yàn)榍蚁嘟挥?所以平面,所以,因?yàn)?所以,因?yàn)?在平面內(nèi),所以,所以.(2)以為原點(diǎn),過(guò)作的平行線,分別以,分別為軸,軸,軸建立空間直角坐標(biāo)系,設(shè),則,因?yàn)樵诶馍?可設(shè),所以,設(shè)平面的法向量為,因?yàn)?所以,即,令,可得,即,設(shè)直線與平面所成角為,所以,可知當(dāng)時(shí),取最大值.(3)設(shè),則有,得,設(shè),那么,所以,所以.因?yàn)?所以.又因?yàn)?所以,設(shè)平面的法向量為,則,即,可得,即 因?yàn)樵谄矫鎯?nèi),所以,所以,所以,即,所以或者(舍),即.【點(diǎn)睛】本題考查面面垂直的證明,考查空間向量法求線面成角,考查運(yùn)算能力與空間想象能力.21(1);(2).【解析】(1)根據(jù),成等差數(shù)列以及為等比數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論