河南省鄭州市鄭州2022年高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第1頁
河南省鄭州市鄭州2022年高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第2頁
河南省鄭州市鄭州2022年高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第3頁
河南省鄭州市鄭州2022年高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第4頁
河南省鄭州市鄭州2022年高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1若不等式在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),則實數(shù)的取值范圍是( )ABCD22019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數(shù)字按照任意次序排

2、成一行,拼成一個6位數(shù),則產(chǎn)生的不同的6位數(shù)的個數(shù)為A96B84C120D3603已知ab0,c1,則下列各式成立的是()AsinasinbBcacbCacbcD4設(shè),滿足約束條件,若的最大值為,則的展開式中項的系數(shù)為( )A60B80C90D1205在等差數(shù)列中,若,則( )A8B12C14D106盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數(shù),則( )A,B,C,D,7已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為( )AB2C4D8已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的

3、標(biāo)準(zhǔn)方程為( )ABCD9若集合,則( )ABCD10已知向量,且與的夾角為,則x=( )A-2B2C1D-111a為正實數(shù),i為虛數(shù)單位,則a=( )A2BCD112某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數(shù)為( )A1B2C3D0二、填空題:本題共4小題,每小題5分,共20分。13在中,角A,B,C的對邊分別為a,b,c,且,則_.14若一個正四面體的棱長為1,四個頂點在同一個球面上,則此球的表面積為_.15已知,則_.(填“”或“=”或“”).16給出下列等式:,請從中歸納出第個等式:_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)某校

4、為了解校園安全教育系列活動的成效,對全校學(xué)生進(jìn)行一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應(yīng)等級進(jìn)行量化:“合格”記分,“不合格”記分.現(xiàn)隨機抽取部分學(xué)生的成績,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下所示:等級不合格合格得分頻數(shù)624()若測試的同學(xué)中,分?jǐn)?shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認(rèn)為性別與安全意識有關(guān)? 是否合格 性別 不合格合格總計男生女生總計()用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中,共選取人進(jìn)行座談,現(xiàn)再從這人中任選人,記所選人的量化總分為,求的分布列及數(shù)學(xué)期望;()某評估機構(gòu)以指標(biāo)(,其中表示的方差)來評

5、估該校安全教育活動的成效,若,則認(rèn)定教育活動是有效的;否則認(rèn)定教育活動無效,應(yīng)調(diào)整安全教育方案.在()的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?附表及公式:,其中.18(12分)已知點,若點滿足.()求點的軌跡方程; ()過點的直線與()中曲線相交于兩點,為坐標(biāo)原點, 求面積的最大值及此時直線的方程.19(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負(fù)半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數(shù)的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.20(12分)如圖,直三棱柱中,分別是的中點,.(1

6、)證明:平面;(2)求二面角的余弦值.21(12分)已知函數(shù)(1)若恒成立,求實數(shù)的取值范圍;(2)若方程有兩個不同實根,證明:22(10分)已知動圓過定點,且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點,過分別作的切線,兩切線的交點為,直線與交于兩點(1)證明:點始終在直線上且;(2)求四邊形的面積的最小值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】由題可知,設(shè)函數(shù),根據(jù)導(dǎo)數(shù)求出的極值點,得出單調(diào)性,根據(jù)在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),結(jié)合圖象,可求出實數(shù)的取值

7、范圍.【詳解】設(shè)函數(shù),因為,所以,或,因為 時,或時,其圖象如下:當(dāng)時,至多一個整數(shù)根;當(dāng)時,在內(nèi)的解集中僅有三個整數(shù),只需,所以.故選:C.【點睛】本題考查不等式的解法和應(yīng)用問題,還涉及利用導(dǎo)數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時考查數(shù)形結(jié)合思想和解題能力.2B【解析】2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個,其中含有2個10的排列數(shù)共個,所以產(chǎn)生的不同的6位數(shù)的個數(shù)為.故選B3B【解析】根據(jù)函數(shù)單調(diào)性逐項判斷即可【詳解】對A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯誤;對B,因為ycx為增函數(shù),且ab,所以cacb,正確對C,因為yxc為增函數(shù),故 ,錯

8、誤;對D, 因為在為減函數(shù),故 ,錯誤故選B【點睛】本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題4B【解析】畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到,再利用二項式定理計算得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),即,故表示直線與截距的倍,根據(jù)圖像知:當(dāng)時,的最大值為,故.展開式的通項為:,取得到項的系數(shù)為:.故選:.【點睛】本題考查了線性規(guī)劃求最值,二項式定理,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.5C【解析】將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設(shè)等差數(shù)列的首項為,公差為,則由,得解得,所以故選C【點睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列

9、的任意兩項的值,可通過構(gòu)建和的方程組求通項公式.6C【解析】根據(jù)古典概型概率計算公式,計算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,所以.表示取出兩個球,其中一黑一白,表示取出兩個球為黑球,表示取出兩個球為白球,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數(shù)學(xué)期望的計算,屬于中檔題.7C【解析】設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進(jìn)而得到切線方程,將點坐標(biāo)代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,即,由于都過點,所以,即都在直線上,所以直線

10、的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【點睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點所在直線求解是解題的關(guān)鍵,屬于中檔題.8B【解析】由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程【詳解】由拋物線y22px(p0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,所以拋物線的標(biāo)準(zhǔn)方程為:y22x故選B【點睛】本題考查了拋物線的簡單性質(zhì)的應(yīng)用,拋物線方程的求法,屬于基礎(chǔ)題9B【解析】根據(jù)正弦函數(shù)的性質(zhì)可得集合A,由集合性質(zhì)表示形式即可求得,進(jìn)而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關(guān)系

11、的判斷與應(yīng)用,集合的包含關(guān)系與補集關(guān)系的應(yīng)用,屬于中檔題.10B【解析】由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎(chǔ)題.11B【解析】,選B.12C【解析】由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數(shù).【詳解】由三視圖還原原幾何體如圖,其中,為直角三角形.該三棱錐的表面中直角三角形的個數(shù)為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】利用正弦定理將邊化角,即可容易求得結(jié)果.【詳解】由正弦定理可知,即.故答案為

12、:.【點睛】本題考查利用正弦定理實現(xiàn)邊角互化,屬基礎(chǔ)題.14【解析】將四面體補成一個正方體,通過正方體的對角線與球的半徑的關(guān)系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補形成一個正方體,則正四面體的外接球與正方體的外接球表示同一個球,因為正四面體的棱長為1,所以正方體的棱長為,設(shè)球的半徑為,因為球的直徑是正方體的對角線, 即,解得,所以球的表面積為.【點睛】本題主要考查了有關(guān)求得組合體的結(jié)構(gòu)特征,以及球的表面積的計算,其中巧妙構(gòu)造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及運算與求解能力,屬于基礎(chǔ)題

13、.15【解析】注意到,故只需比較與1的大小即可.【詳解】由已知,故有.又由,故有.故答案為:.【點睛】本題考查對數(shù)式比較大小,涉及到換底公式的應(yīng)用,考查學(xué)生的數(shù)學(xué)運算能力,是一道中檔題.16【解析】通過已知的三個等式,找出規(guī)律,歸納出第個等式即可【詳解】解:因為:,等式的右邊系數(shù)是2,且角是等比數(shù)列,公比為,則角滿足:第個等式中的角,所以;故答案為:【點睛】本題主要考查歸納推理,注意已知表達(dá)式的特征是解題的關(guān)鍵,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17()詳見解析;()詳見解析;()不需要調(diào)整安全教育方案.【解析】(I)根據(jù)題目所給數(shù)據(jù)填寫好列聯(lián)表,計算出的

14、值,由此判斷出在犯錯誤概率不超過的前提下,不能認(rèn)為性別與安全測試是否合格有關(guān).(II)利用超幾何分布的計算公式,計算出的分布列并求得數(shù)學(xué)期望.(III)由(II)中數(shù)據(jù),計算出,進(jìn)而求得的值,從而得出該校的安全教育活動是有效的,不需要調(diào)整安全教育方案.【詳解】解:()由頻率分布直方圖可知,得分在的頻率為,故抽取的學(xué)生答卷總數(shù)為,.性別與合格情況的列聯(lián)表為: 是否合格 性別 不合格合格小計男生女生小計即在犯錯誤概率不超過的前提下,不能認(rèn)為性別與安全測試是否合格有關(guān).()“不合格”和“合格”的人數(shù)比例為,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值為, .的分布列為:20151050

15、所以. ()由()知: .故我們認(rèn)為該校的安全教育活動是有效的,不需要調(diào)整安全教育方案.【點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查超幾何分布的分布列、數(shù)學(xué)期望和方差的計算,所以中檔題.18();()面積的最大值為,此時直線的方程為.【解析】(1)根據(jù)橢圓的定義求解軌跡方程;(2)設(shè)出直線方程后,采用(表示原點到直線的距離)表示面積,最后利用基本不等式求解最值.【詳解】解:()由定義法可得,點的軌跡為橢圓且,. 因此橢圓的方程為. ()設(shè)直線的方程為與橢圓交于點, ,聯(lián)立直線與橢圓的方程消去可得,即,. 面積可表示為令,則,上式可化為,當(dāng)且僅當(dāng),即時等號成立,因此面積的最大值為,此時直線的方程

16、為.【點睛】常見的利用定義法求解曲線的軌跡方程問題:(1)已知點,若點滿足且,則的軌跡是橢圓;(2)已知點,若點滿足且,則的軌跡是雙曲線.19(1);(2);(2)見解析【解析】(1)由圓的方程求出點坐標(biāo),得雙曲線的,再計算出后可得漸近線方程;(2)設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,由先求出,回代后求得坐標(biāo),計算;(3)由已知得,設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,求出,從而可得,由,可知滿足要求的點不存在【詳解】(1)由題意圓方程為,令得,即,漸近線方程為(2)由(1)圓方程為,設(shè),由得,(*),所以,即,解得,方程(*)為,即,代入雙曲線方程得,在第一、四象限,

17、(3)由題意,設(shè)由得:,由得,解得,所以,當(dāng)且僅當(dāng)三點共線時,等號成立,軸上不存在點,使得【點睛】本題考查求漸近線方程,考查圓與雙曲線相交問題考查向量的加法運算,本題對學(xué)生的運算求解能力要求較高,解題時都是直接求出交點坐標(biāo)難度較大,屬于困難題20 (1)證明見解析 (2) 【解析】(1)連接交于點,由三角形中位線定理得,由此能證明平面(2)以為坐標(biāo)原點,的方向為軸正方向,的方向為軸正方向,的方向為軸正方向,建立空間直角坐標(biāo)系分別求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值【詳解】證明:證明:連接交于點,則為的中點又是的中點,連接,則因為平面,平面,所以平面(2)由,可得:,即

18、所以又因為直棱柱,所以以點為坐標(biāo)原點,分別以直線為軸、軸、軸,建立空間直角坐標(biāo)系, 則,設(shè)平面的法向量為,則且,可解得,令,得平面的一個法向量為, 同理可得平面的一個法向量為, 則 所以二面角的余弦值為.【點睛】本題主要考查直線與平面平行、二面角的概念、求法等知識,考查空間想象能力和邏輯推理能力,屬于中檔題21(1)(2)詳見解析【解析】(1)將原不等式轉(zhuǎn)化為,構(gòu)造函數(shù),求得的最大值即可;(2)首先通過求導(dǎo)判斷的單調(diào)區(qū)間,考查兩根的取值范圍,再構(gòu)造函數(shù),將問題轉(zhuǎn)化為證明,探究在區(qū)間內(nèi)的最大值即可得證【詳解】解:(1)由,即,即,令,則只需,令,得,在上單調(diào)遞增,在上單調(diào)遞減,的取值范圍是;(2

19、)證明:不妨設(shè),當(dāng)時,單調(diào)遞增,當(dāng)時,單調(diào)遞減,當(dāng)時,要證,即證,由在上單調(diào)遞增,只需證明,由,只需證明,令,只需證明,易知,由,故,從而在上單調(diào)遞增,由,故當(dāng)時,故,證畢【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,最值等,關(guān)鍵是要對問題進(jìn)行轉(zhuǎn)化,比如把恒成立問題轉(zhuǎn)化為最值問題,把根的個數(shù)問題轉(zhuǎn)化為圖像的交點個數(shù),進(jìn)而轉(zhuǎn)化為證明不等式的問題,屬難題22(1)見解析(2)最小值為1【解析】(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此求得點的坐標(biāo).寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達(dá)定理求得點的坐標(biāo),并由此判斷出始終在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論