版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1拋物線的準(zhǔn)線方程是,則實(shí)數(shù)( )ABCD2已知定義在上的函數(shù)滿足,且當(dāng)時,.設(shè)在上的最大值為(),且數(shù)列的前項的和為.若對于任意正整數(shù)不等式恒成立,則實(shí)數(shù)的取值范圍為( )ABCD3
2、已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:,.其中滿足條件的所有直線的編號有( )ABCD4總體由編號01,,02,19,20的20個個體組成利用下面的隨機(jī)數(shù)表選取5個個體,選取方法是隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為7816657208026314070243699728019832049234493582003623486969387481A08B07C02D015設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為( )A2BCD36函數(shù)的一個零點(diǎn)在區(qū)間內(nèi),則實(shí)數(shù)a的取值范圍是( )
3、ABCD7設(shè)為等差數(shù)列的前項和,若,則的最小值為( )ABCD8的展開式中的系數(shù)為( )A5B10C20D309若將函數(shù)的圖象上各點(diǎn)橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)得到函數(shù)的圖象,則下列說法正確的是()A函數(shù)在上單調(diào)遞增B函數(shù)的周期是C函數(shù)的圖象關(guān)于點(diǎn)對稱D函數(shù)在上最大值是110百年雙中的校訓(xùn)是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運(yùn)動會中有這樣的一個小游戲.袋子中有大小、形狀完全相同的四個小球,分別寫有“仁”、“智”、“雅”、“和”四個字,有放回地從中任意摸出一個小球,直到“仁”、“智”兩個字都摸到就停止摸球.小明同學(xué)用隨機(jī)模擬的方法恰好在第三次停止摸球的概率.利用
4、電腦隨機(jī)產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機(jī)數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個字,以每三個隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下20組隨機(jī)數(shù):141 432 341 342 234 142 243 331 112 322342 241 244 431 233 214 344 142 134 412由此可以估計,恰好第三次就停止摸球的概率為( )ABCD11集合的真子集的個數(shù)是( )ABCD12設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限二、填空題:本題共4小題,每小題5分,共20
5、分。13在的二項展開式中,所有項的系數(shù)的和為_14如圖,在中,已知,為邊的中點(diǎn)若,垂足為,則的值為_ 15平面區(qū)域的外接圓的方程是_.16已知函數(shù),若,則_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).()求的值;()若,且,求的值.18(12分)某生物硏究小組準(zhǔn)備探究某地區(qū)蜻蜓的翼長分布規(guī)律,據(jù)統(tǒng)計該地區(qū)蜻蜓有兩種,且這兩種的個體數(shù)量大致相等,記種蜻蜓和種蜻蜓的翼長(單位:)分別為隨機(jī)變量,其中服從正態(tài)分布,服從正態(tài)分布.()從該地區(qū)的蜻蜓中隨機(jī)捕捉一只,求這只蜻蜓的翼長在區(qū)間的概率;()記該地區(qū)蜻蜓的翼長為隨機(jī)變量,若用正態(tài)分布來近似描述的分布,請
6、你根據(jù)()中的結(jié)果,求參數(shù)和的值(精確到0.1);()在()的條件下,從該地區(qū)的蜻蜓中隨機(jī)捕捉3只,記這3只中翼長在區(qū)間的個數(shù)為,求的分布列及數(shù)學(xué)期望(分布列寫出計算表達(dá)式即可).注:若,則,.19(12分)在中,角的對邊分別為,若.(1)求角的大?。唬?)若,為外一點(diǎn),求四邊形面積的最大值.20(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點(diǎn). 為橢圓的右焦點(diǎn), 為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),連接分別交橢圓于兩點(diǎn).求橢圓的標(biāo)準(zhǔn)方程;若,求的值;設(shè)直線, 的斜率分別為, ,是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請說明理由.21(12分)在中,設(shè)、分別為角、的對邊,記
7、的面積為,且(1)求角的大小;(2)若,求的值22(10分)已知函數(shù),其中為自然對數(shù)的底數(shù),(1)若曲線在點(diǎn)處的切線與直線平行,求的值;(2)若,問函數(shù)有無極值點(diǎn)?若有,請求出極值點(diǎn)的個數(shù);若沒有,請說明理由參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】根據(jù)準(zhǔn)線的方程寫出拋物線的標(biāo)準(zhǔn)方程,再對照系數(shù)求解即可.【詳解】因為準(zhǔn)線方程為,所以拋物線方程為,所以,即.故選:C【點(diǎn)睛】本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.2C【解析】由已知先求出,即,進(jìn)一步可得,再將所求問題轉(zhuǎn)化為對于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值
8、即可.【詳解】當(dāng)時,則,所以,顯然當(dāng)時,故,若對于任意正整數(shù)不等式恒成立,即對于任意正整數(shù)恒成立,即對于任意正整數(shù)恒成立,設(shè),令,解得,令,解得,考慮到,故有當(dāng)時,單調(diào)遞增,當(dāng)時,有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.【點(diǎn)睛】本題考查數(shù)列中的不等式恒成立問題,涉及到求函數(shù)解析、等比數(shù)列前n項和、數(shù)列單調(diào)性的判斷等知識,是一道較為綜合的數(shù)列題.3D【解析】求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,而,與的面積相等,或,即到直線的距離或時滿足條件,根據(jù)點(diǎn)到直線距離可知
9、,滿足條件.故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.4D【解析】從第一行的第5列和第6列起由左向右讀數(shù)劃去大于20的數(shù)分別為:08,02,14,07,01,所以第5個個體是01,選D.考點(diǎn):此題主要考查抽樣方法的概念、抽樣方法中隨機(jī)數(shù)表法,考查學(xué)習(xí)能力和運(yùn)用能力.5A【解析】分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值. 詳解:由得到,故無解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線
10、中與線段的長度相關(guān)的最值問題,可利用拋物線的幾何性質(zhì)把動線段的長度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來求解.6C【解析】顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個零點(diǎn)在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因為的一個零點(diǎn)在區(qū)間內(nèi),所以,即,解得,故選:C【點(diǎn)睛】本題考查零點(diǎn)存在性定理的應(yīng)用,屬于基礎(chǔ)題.7C【解析】根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎(chǔ)題.8C【解析】由知,展開式中項有兩
11、項,一項是中的項,另一項是與中含x的項乘積構(gòu)成.【詳解】由已知,因為展開式的通項為,所以展開式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應(yīng)寫準(zhǔn)確,本題是一道基礎(chǔ)題.9A【解析】根據(jù)三角函數(shù)伸縮變換特點(diǎn)可得到解析式;利用整體對應(yīng)的方式可判斷出在上單調(diào)遞增,正確;關(guān)于點(diǎn)對稱,錯誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標(biāo)縮短到原來的得:當(dāng)時,在上單調(diào)遞增 在上單調(diào)遞增,正確;的最小正周期為: 不是的周期,錯誤;當(dāng)時,關(guān)于點(diǎn)對稱,錯誤;當(dāng)時, 此時沒有最大值,錯誤.本題正
12、確選項:【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關(guān)鍵是能夠靈活應(yīng)用整體對應(yīng)的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質(zhì).10A【解析】由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數(shù)比20即可得解.【詳解】由題意可知當(dāng)1,2同時出現(xiàn)時即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點(diǎn)睛】本題考查了簡單隨機(jī)抽樣中隨機(jī)數(shù)的應(yīng)用和古典概型概率的計算,屬于基礎(chǔ)題.11C【解析】根據(jù)含有個元素的
13、集合,有個子集,有個真子集,計算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【點(diǎn)睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎(chǔ)題12D【解析】先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出,得到其坐標(biāo)可得答案.【詳解】解:由,得,所以,其在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,在第四象限故選:D【點(diǎn)睛】此題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。131【解析】設(shè),令,的值即為所有項的系數(shù)之和?!驹斀狻吭O(shè),令,所有項的系數(shù)的和為?!军c(diǎn)睛】本
14、題主要考查二項式展開式所有項的系數(shù)的和的求法賦值法。一般地,對于 ,展開式各項系數(shù)之和為,注意與“二項式系數(shù)之和”區(qū)分。14【解析】,由余弦定理,得,得,所以,所以點(diǎn)睛:本題考查平面向量的綜合應(yīng)用本題中存在垂直關(guān)系,所以在線性表示的過程中充分利用垂直關(guān)系,得到,所以本題轉(zhuǎn)化為求長度,利用余弦定理和面積公式求解即可15【解析】作出平面區(qū)域,可知平面區(qū)域為三角形,求出三角形的三個頂點(diǎn)坐標(biāo),設(shè)三角形的外接圓方程為,將三角形三個頂點(diǎn)坐標(biāo)代入圓的一般方程,求出、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區(qū)域如下圖所示:由圖可知,平面區(qū)域為,聯(lián)立,解得,則點(diǎn),同理可得點(diǎn)、,設(shè)的外接圓方程
15、為,由題意可得,解得,因此,所求圓的方程為.故答案為:.【點(diǎn)睛】本題考查三角形外接圓方程的求解,同時也考查了一元二次不等式組所表示的平面區(qū)域的求作,考查數(shù)形結(jié)合思想以及運(yùn)算求解能力,屬于中等題.16【解析】根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【詳解】因為函數(shù),其定義域為,所以其定義域關(guān)于原點(diǎn)對稱,又,所以函數(shù)為奇函數(shù),因為,所以.故答案為:【點(diǎn)睛】本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運(yùn)算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關(guān)鍵;屬于中檔題、常考題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17();().【解析】(
16、)直接代入再由誘導(dǎo)公式計算可得;()先得到,再根據(jù)利用兩角差的余弦公式計算可得【詳解】解:();()因為所以,由得,又因為,故,所以,所以.【點(diǎn)睛】本題考查了三角函數(shù)中的恒等變換應(yīng)用,屬于中檔題18();(),;()詳見解析.【解析】()由題知這只蜻蜓是種還是種的可能性是相等的,所以,代入數(shù)值運(yùn)算即可;()可判斷均值應(yīng)為,再結(jié)合(1)和題干備注信息可得,進(jìn)而求解;()求得,該分布符合二項分布,故,列出分布列,計算出對應(yīng)概率,結(jié)合即可求解;【詳解】()記這只蜻蜓的翼長為.因為種蜻蜓和種蜻蜓的個體數(shù)量大致相等,所以這只蜻蜓是種還是種的可能性是相等的.所以.()由于兩種蜻蜓的個體數(shù)量相等,的方差也相
17、等,根據(jù)正態(tài)曲線的對稱性,可知由()可知,得.()設(shè)蜻蜓的翼長為,則.由題有,所以.因此的分布列為.【點(diǎn)睛】本題考查正態(tài)分布基本量的求解,二項分布求解離散型隨機(jī)變量分布列和期望,屬于中檔題19(1)(2)【解析】(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進(jìn)而可得最值.【詳解】(1),由正弦定理得: 在中,則,即,即.(2)在中,又,則為等邊三角形,又,-當(dāng)時,四邊形的面積取最大值,最大值為.【點(diǎn)睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,屬于基礎(chǔ)題20(1)(2) (3)【解析】試題分析:(1);(2)由橢圓對稱性,知,所以,
18、此時直線方程為,故 (3)設(shè),則,通過直線和橢圓方程,解得,所以,即存在試題解析:(1)設(shè)橢圓方程為,由題意知: 解之得:,所以橢圓方程為: (2)若,由橢圓對稱性,知,所以, 此時直線方程為, 由,得,解得(舍去),故 (3)設(shè),則,直線的方程為,代入橢圓方程,得,因為是該方程的一個解,所以點(diǎn)的橫坐標(biāo), 又在直線上,所以,同理,點(diǎn)坐標(biāo)為, 所以,即存在,使得21(1);(2)【解析】(1)由三角形面積公式,平面向量數(shù)量積的運(yùn)算可得,結(jié)合范圍,可求,進(jìn)而可求的值(2)利用同角三角函數(shù)基本關(guān)系式可求,利用兩角和的正弦函數(shù)公式可求的值,由正弦定理可求得的值【詳解】解:(1)由,得,因為,所以,可得:(2)中,所以.所以:,由正弦定理,得,解得,【點(diǎn)睛】本題主要考查了三角形面積公式,平面向量數(shù)量積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年貨物銷售合同(含售后服務(wù))
- 2025年度木門行業(yè)環(huán)保認(rèn)證合同3篇
- 2024年版建筑工程施工保險合同
- 2024年特許經(jīng)營合同協(xié)議書(含商標(biāo)使用)
- 2024年度奢侈品抵押消費(fèi)貸款合同范本3篇
- 2024版?zhèn)€人二手房定金買賣合同書
- 2025年工廠員工健康體檢與疾病預(yù)防服務(wù)合同2篇
- 2024民商法學(xué)碩士學(xué)位論文修改與完善合同3篇
- 環(huán)保應(yīng)急預(yù)案(2篇)
- 2024年股權(quán)退出協(xié)議范本:合伙人股權(quán)轉(zhuǎn)出合同
- 巴以沖突完整
- Unit5PartALetsspellPartBCLetscheck-Storytime教學(xué)設(shè)計四年級英語上冊(人教PEP版)
- 垃圾分類督導(dǎo)服務(wù)投標(biāo)方案(技術(shù)方案)
- 2023秋期國開電大本科《法律文書》在線形考(第一至五次考核形考任務(wù))試題及答案
- 2023-2024學(xué)年廣西貴港市六年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含答案
- 上海某C住宅項目成本解析
- 北方民族大學(xué)床上用品投標(biāo)文件
- 安全生產(chǎn)費(fèi)用歸集清單(安措費(fèi)清單)
- 左傳簡介完整
- 榕江縣銻礦 礦業(yè)權(quán)出讓收益計算書
- 顱腦外科手術(shù)環(huán)境及手術(shù)配合
評論
0/150
提交評論