第五講二元選擇模型_第1頁(yè)
第五講二元選擇模型_第2頁(yè)
第五講二元選擇模型_第3頁(yè)
第五講二元選擇模型_第4頁(yè)
第五講二元選擇模型_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、ObswithDep=036Totalobs50第五講:二元選擇模型散點(diǎn)圖:SCORELogit模型回歸結(jié)果:DependentVariable:YMethod:ML-BinaryLogit(Quadratichillclimbing)Date:06/29/11Time:15:40Sample:150Includedobservations:50Convergenceachievedafter8iterationsCovariancematrixcomputedusingsecondderivativesCoefficientStd.Errorz-StatisticProb.C-242.457

2、6124.5182-1.9471650.0515SCORE0.6770610.3480361.9453800.0517D1-0.4766052.984586-0.1596890.8731McFaddenR-squared0.865774Meandependentvar0.280000S.D.dependentvar0.453557S.E.ofregression0.163168Akaikeinfocriterion0.279179Sumsquaredresid1.251316Schwarzcriterion0.393901Loglikelihood-3.979482Hannan-Quinncr

3、iter.0.322866Restr.loglikelihood-29.64767LRstatistic51.33637Avg.loglikelihood-0.079590Prob(LRstatistic)0.000000ObswithDep=114回歸方程:Y=-242.4576+0.677061SCORE-0.476605D二元變量項(xiàng)不顯著,將其刪去,回歸結(jié)果如下:DependentVariable:YMethod:ML-BinaryLogit(Quadratichillclimbing)Date:06/29/11Time:15:43Sample:150Includedobservatio

4、ns:50Convergenceachievedafter7iterationsCovariancematrixcomputedusingsecondderivativesCoefficientStd.Errorz-StatisticProb.C-243.7362125.5575-1.9412320.0522SCORE0.6794410.3504951.9385190.0526McFaddenR-squared0.865341Meandependentvar0.280000S.D.dependentvar0.453557S.E.ofregression0.162405Akaikeinfocri

5、terion0.239693Sumsquaredresid1.266017Schwarzcriterion0.316174Loglikelihood-3.992330Hannan-Quinncriter.0.268818Restr.loglikelihood-29.64767LRstatistic51.31067Avg.loglikelihood-0.079847Prob(LRstatistic)0.000000ObswithDep=036Totalobs50ObswithDep=114回歸方程:Y=-243.7362+0.679441SCORE預(yù)測(cè)y值ObswithDep=114Obswit

6、hDep=114Forecast:YFActual:YForecastsample:150Includedobservations:50RootMeanSquaredError0.159124MeanAbsoluteError0.049475MeanAbs.PercentError2.473737TheilInequalityCoefficient0.153748BiasProportion0.000000VarianceProportion0.030426CovarianceProportion0.969574擬合結(jié)果:SCOREYYFProbit模型回歸結(jié)果:DependentVariab

7、le:YMethod:ML-BinaryProbit(Quadratichillclimbing)Date:06/29/11Time:15:50Sample:150Includedobservations:50Convergenceachievedafter8iterationsCovariancematrixcomputedusingsecondderivativesCoefficientStd.Errorz-StatisticProb.C-144.456070.19814-2.0578320.0396SCORE0.4028680.1961862.0535020.0400McFaddenR-squared0.867217Meandependentvar0.280000S.D.dependentvar0.453557S.E.ofregression0.163582Akaikeinfocriterion0.237468Sumsquaredresid1.284441Schwarzcriterion0.313949Loglikelihood-3.936702Hannan-Quinncriter.0.266592Restr.loglikelihood-29.64767LRstatistic51.42193

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論