




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知.給出下列判斷:若,且,則;存在使得的圖象向右平移個(gè)單位長(zhǎng)度后得到的圖象關(guān)于軸對(duì)稱;若在上恰有7個(gè)零點(diǎn),則的取值范圍為;若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個(gè)數(shù)為( )A1B2C3D42已知集合,集合,則()ABCD3已
2、知是圓心為坐標(biāo)原點(diǎn),半徑為1的圓上的任意一點(diǎn),將射線繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到交圓于點(diǎn),則的最大值為( )A3B2CD4集合,則( )ABCD5已知,則( )ABC3D46已知平面向量,滿足且,若對(duì)每一個(gè)確定的向量,記的最小值為,則當(dāng)變化時(shí),的最大值為( )ABCD17已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,平面,是邊長(zhǎng)為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()ABCD8命題“”的否定是( )ABCD9已知函數(shù),若,則的取值范圍是( )ABCD10已知數(shù)列為等差數(shù)列,為其前 項(xiàng)和,則( )ABCD11已知函數(shù)f(x)ebxexb+c(b,c均為常數(shù))的圖象關(guān)于點(diǎn)(2,1)對(duì)稱,則f(5
3、)+f(1)( )A2B1C2D412執(zhí)行如圖所示的程序框圖,若輸入,則輸出的值為( )A0B1CD二、填空題:本題共4小題,每小題5分,共20分。13四邊形中,則的最小值是_.14已知函數(shù),則關(guān)于的不等式的解集為_15已知數(shù)列滿足,若,則數(shù)列的前n項(xiàng)和_16一個(gè)長(zhǎng)、寬、高分別為1、2、2的長(zhǎng)方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則容器體積的最小值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線極坐標(biāo)方程為.若直線交曲線于,兩點(diǎn),求線段的長(zhǎng).18(12分)已知函數(shù),(
4、1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;(2)若,當(dāng)時(shí),函數(shù),求函數(shù)的最小值19(12分)我們稱n()元有序?qū)崝?shù)組(,)為n維向量,為該向量的范數(shù).已知n維向量,其中,2,n.記范數(shù)為奇數(shù)的n維向量的個(gè)數(shù)為,這個(gè)向量的范數(shù)之和為.(1)求和的值;(2)當(dāng)n為偶數(shù)時(shí),求,(用n表示).20(12分)已知函數(shù).(1)證明:函數(shù)在上存在唯一的零點(diǎn);(2)若函數(shù)在區(qū)間上的最小值為1,求的值.21(12分)甲、乙、丙三名射擊運(yùn)動(dòng)員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.(1)求的分布列及數(shù)學(xué)期望;(2)在概率(=0,1,2,3)中, 若的值最大, 求實(shí)數(shù)的取值范圍.22(10分)已知函數(shù).(1)討
5、論的單調(diào)性;(2)曲線在點(diǎn)處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】對(duì)函數(shù)化簡(jiǎn)可得,進(jìn)而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱性及平移變換,對(duì)四個(gè)命題逐個(gè)分析,可選出答案.【詳解】因?yàn)?,所以周?對(duì)于,因?yàn)?,所以,即,故錯(cuò)誤;對(duì)于,函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到的函數(shù)為,其圖象關(guān)于軸對(duì)稱,則,解得,故對(duì)任意整數(shù),所以錯(cuò)誤;對(duì)于,令,可得,則,因?yàn)?,所以在上?個(gè)零點(diǎn),且,所以第7個(gè)零點(diǎn),若存在第8個(gè)零點(diǎn),則,所以,即,解得,故正確;對(duì)于,因?yàn)?,且,?/p>
6、以,解得,又,所以,故正確.故選:B.【點(diǎn)睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱性,考查學(xué)生的計(jì)算求解能力與推理能力,屬于中檔題.2D【解析】可求出集合,然后進(jìn)行并集的運(yùn)算即可【詳解】解:,;故選【點(diǎn)睛】考查描述法、區(qū)間的定義,對(duì)數(shù)函數(shù)的單調(diào)性,以及并集的運(yùn)算3C【解析】設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,利用輔助角公式計(jì)算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,所以,當(dāng)時(shí),取得等號(hào).故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識(shí),是一道容易題.4A【解析】計(jì)算,再計(jì)算交集得
7、到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.5A【解析】根據(jù)復(fù)數(shù)相等的特征,求出和,再利用復(fù)數(shù)的模公式,即可得出結(jié)果.【詳解】因?yàn)?,所以,解得則.故選:A.【點(diǎn)睛】本題考查相等復(fù)數(shù)的特征和復(fù)數(shù)的模,屬于基礎(chǔ)題.6B【解析】根據(jù)題意,建立平面直角坐標(biāo)系.令.為中點(diǎn).由即可求得點(diǎn)的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點(diǎn)共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當(dāng)與圓相切時(shí),有最大值.利用圓的切線性質(zhì)及點(diǎn)到直線距離公式即可求得直線方程,進(jìn)而求得原點(diǎn)到直線的距離,即為的最大值.【詳解】根據(jù)題意,設(shè),則由代入可得即點(diǎn)的軌跡方程為又因?yàn)?變形可得,即,且
8、所以由平面向量基本定理可知三點(diǎn)共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當(dāng)與圓相切時(shí),有最大值設(shè)切線的方程為,化簡(jiǎn)可得由切線性質(zhì)及點(diǎn)到直線距離公式可得,化簡(jiǎn)可得 即 所以切線方程為或所以當(dāng)變化時(shí), 到直線的最大值為 即的最大值為故選:B【點(diǎn)睛】本題考查了平面向量的坐標(biāo)應(yīng)用,平面向量基本定理的應(yīng)用, 圓的軌跡方程問題,圓的切線性質(zhì)及點(diǎn)到直線距離公式的應(yīng)用,綜合性強(qiáng),屬于難題.7C【解析】設(shè)為中點(diǎn),先證明平面,得出為所求角,利用勾股定理計(jì)算,得出結(jié)論【詳解】設(shè)分別是的中點(diǎn)平面 是等邊三角形 又平面 為與平面所成的角是邊長(zhǎng)為的等邊三角形,且為所在截面圓的圓心球的表面積
9、為 球的半徑平面 本題正確選項(xiàng):【點(diǎn)睛】本題考查了棱錐與外接球的位置關(guān)系問題,關(guān)鍵是能夠通過垂直關(guān)系得到直線與平面所求角,再利用球心位置來求解出線段長(zhǎng),屬于中檔題8D【解析】根據(jù)全稱命題的否定是特稱命題,對(duì)命題進(jìn)行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,故選D【點(diǎn)睛】本題考查全稱命題的否定,難度容易.9B【解析】對(duì)分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.10B【解析】利用等差數(shù)列的性質(zhì)求出的值,然后利用等差數(shù)列求和公式以及等差中項(xiàng)的性質(zhì)可求出的值.【詳解】由等差數(shù)列的性
10、質(zhì)可得,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列基本性質(zhì)的應(yīng)用,同時(shí)也考查了等差數(shù)列求和,考查計(jì)算能力,屬于基礎(chǔ)題.11C【解析】根據(jù)對(duì)稱性即可求出答案【詳解】解:點(diǎn)(5,f(5)與點(diǎn)(1,f(1)滿足(51)22,故它們關(guān)于點(diǎn)(2,1)對(duì)稱,所以f(5)+f(1)2,故選:C【點(diǎn)睛】本題主要考查函數(shù)的對(duì)稱性的應(yīng)用,屬于中檔題12A【解析】根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,因?yàn)?,所以由程序框圖知,輸出的值為.故選:A【點(diǎn)睛】本題考查了對(duì)數(shù)式大小比較,條件程序框圖的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】在中利用正弦定理得出,進(jìn)而可知
11、,當(dāng)時(shí),取最小值,進(jìn)而計(jì)算出結(jié)果.【詳解】,如圖,在中,由正弦定理可得,即,故當(dāng)時(shí),取到最小值為.故答案為:.【點(diǎn)睛】本題考查解三角形,同時(shí)也考查了常見的三角函數(shù)值,考查邏輯推理能力與計(jì)算能力,屬于中檔題14【解析】判斷的奇偶性和單調(diào)性,原不等式轉(zhuǎn)化為,運(yùn)用單調(diào)性,可得到所求解集【詳解】令,易知函數(shù)為奇函數(shù),在R上單調(diào)遞增,即,即x故答案為:【點(diǎn)睛】本題考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用:解不等式,考查轉(zhuǎn)化思想和運(yùn)算能力,屬于中檔題15【解析】,求得的通項(xiàng),進(jìn)而求得,得通項(xiàng)公式,利用等比數(shù)列求和即可.【詳解】由題為等差數(shù)列,,故答案為【點(diǎn)睛】本題考查求等差數(shù)列數(shù)列通項(xiàng),等比數(shù)列求和,熟記等差等比性
12、質(zhì),熟練運(yùn)算是關(guān)鍵,是基礎(chǔ)題.16【解析】一個(gè)長(zhǎng)、寬、高分別為1、2、2的長(zhǎng)方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則圓柱形容器的底面直徑及高的最小值均等于長(zhǎng)方體的體對(duì)角線的長(zhǎng),長(zhǎng)方體的體對(duì)角線的長(zhǎng)為,所以容器體積的最小值為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17【解析】由,化簡(jiǎn)得,由,所以直線的直角坐標(biāo)方程為,因?yàn)榍€的參數(shù)方程為,整理得,直線的方程與曲線的方程聯(lián)立,整理得,設(shè),則,根據(jù)弦長(zhǎng)公式求解即可.【詳解】由,化簡(jiǎn)得,又因?yàn)椋灾本€的直角坐標(biāo)方程為,因?yàn)榍€的參數(shù)方程為,消去,整理得,將直線的方程與曲線的方程聯(lián)立,消去,整理得,設(shè),則,所以,將,代入上式,整理
13、得.【點(diǎn)睛】本題考查參數(shù)方程,極坐標(biāo)方程的應(yīng)用,結(jié)合弦長(zhǎng)公式的運(yùn)用,屬于中檔題.18(1)見解析 (2)的最小值為【解析】(1)由題可得函數(shù)的定義域?yàn)?,?dāng)時(shí),令,可得;令,可得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減; 當(dāng)時(shí),令,可得;令,可得或,所以函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),恒成立,所以函數(shù)在上單調(diào)遞增 綜上,當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),函數(shù)在上單調(diào)遞增 (2)方法一:當(dāng)時(shí),設(shè),則,所以函數(shù)在上單調(diào)遞減,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào)當(dāng)時(shí),設(shè),則,所以,設(shè),則,所以函數(shù)在上單調(diào)遞減,且,所以存在,使得,所以當(dāng)時(shí),;當(dāng)時(shí), 所以函數(shù)在上
14、單調(diào)遞增,在上單調(diào)遞減,因?yàn)?,所以,所以,?dāng)且僅當(dāng)時(shí)取等號(hào)所以當(dāng)時(shí),函數(shù)取得最小值,且,故函數(shù)的最小值為 方法二:當(dāng)時(shí),則,令,則,所以函數(shù)在上單調(diào)遞增, 又,所以存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增, 因?yàn)椋援?dāng)時(shí),恒成立,所以當(dāng)時(shí),恒成立,所以函數(shù)在上單調(diào)遞減,所以函數(shù)的最小值為19(1),.(2),【解析】(1)利用枚舉法將范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對(duì)都寫出來,再做和;(2)用組合數(shù)表示和,再由公式或?qū)⒔M合數(shù)進(jìn)行化簡(jiǎn),得出最終結(jié)果.【詳解】解:(1)范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對(duì)有:,它們的范數(shù)依次為1,1,1,1,故,.(2)當(dāng)n為偶數(shù)時(shí),在向量的n個(gè)坐標(biāo)中,要使得范數(shù)為奇數(shù),則
15、0的個(gè)數(shù)一定是奇數(shù),所以可按照含0個(gè)數(shù)為:1,3,進(jìn)行討論:的n個(gè)坐標(biāo)中含1個(gè)0,其余坐標(biāo)為1或,共有個(gè),每個(gè)的范數(shù)為;的n個(gè)坐標(biāo)中含3個(gè)0,其余坐標(biāo)為1或,共有個(gè),每個(gè)的范數(shù)為;的n個(gè)坐標(biāo)中含個(gè)0,其余坐標(biāo)為1或,共有個(gè),每個(gè)的范數(shù)為1;所以,.因?yàn)椋?,所?解法1:因?yàn)?,所?解法2:得,.又因?yàn)?,所?【點(diǎn)睛】本題考查了數(shù)列和組合,是一道較難的綜合題.20(1)證明見解析;(2)【解析】(1)求解出導(dǎo)函數(shù),分析導(dǎo)函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)的存在性定理說明在上存在唯一的零點(diǎn)即可;(2)根據(jù)導(dǎo)函數(shù)零點(diǎn),判斷出的單調(diào)性,從而可確定,利用以及的單調(diào)性,可確定出之間的關(guān)系,從而的值可求.【詳解】(
16、1)證明:,.在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,函數(shù)在上單調(diào)遞增.又,令,則在上單調(diào)遞減,故.令,則所以函數(shù)在上存在唯一的零點(diǎn).(2)解:由(1)可知存在唯一的,使得,即(*).函數(shù)在上單調(diào)遞增.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.由(*)式得.,顯然是方程的解.又是單調(diào)遞減函數(shù),方程有且僅有唯一的解,把代入(*)式,得,即所求實(shí)數(shù)的值為.【點(diǎn)睛】本題考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用,其中涉及到判斷函數(shù)在給定區(qū)間上的零點(diǎn)個(gè)數(shù)以及根據(jù)函數(shù)的最值求解參數(shù),難度較難.(1)判斷函數(shù)的零點(diǎn)個(gè)數(shù)時(shí),可結(jié)合函數(shù)的單調(diào)性以及零點(diǎn)的存在性定理進(jìn)行判斷;(2)函數(shù)的“隱零點(diǎn)”問題,可通過“設(shè)而不求”的思想進(jìn)行分析.21(1),的分布列為0123P(1a)2(1a2)(2aa2)(2)【解析】(1)P()是“個(gè)人命中,3個(gè)人未命中”的概率其中的可能取值為0、1、2、3.P(0)(1a)2(1a)2;P(1)(1a)2a(1a)(1a2);P(2)a(1a)a2(2aa2);P(3)a2.所以的分布列為0123P(1a)2(1a2)(2aa2)的數(shù)學(xué)期望為E()0(1a)21(1a2)2(2aa2)3.(2)P(1)P(0)(1a2)(1a)2a(1a);P(1)P(2)(1a2)(2aa2);P(1)P(3)(1a2)a2.由和0a1,得0a,即a的取值范圍是.22(1)在上增
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 信息化技術(shù)在農(nóng)業(yè)生產(chǎn)中的合作協(xié)議
- 農(nóng)民工在崗培訓(xùn)與勞務(wù)派遣合同
- 購(gòu)買物業(yè)管理服務(wù)協(xié)議書
- 農(nóng)業(yè)生產(chǎn)經(jīng)營(yíng)資金互助保障協(xié)議
- 智慧寓言伊索寓言故事解讀
- 高考語文復(fù)習(xí):專題六、七
- 體育培訓(xùn)中心學(xué)員意外事故的免責(zé)及保障協(xié)議
- 高考文言文斷句100題專項(xiàng)練習(xí)(附答案及翻譯最方便)
- 小馬過河自我成長(zhǎng)的故事解讀
- 農(nóng)業(yè)旅游開發(fā)手冊(cè)
- 叉車裝卸區(qū)域安全風(fēng)險(xiǎn)告知牌
- 2022屆江蘇省南京師范大學(xué)附屬中學(xué)高三(下)考前最后一模物理試題(解析版)
- 辦公用品供貨服務(wù)計(jì)劃方案
- 《普通生物學(xué)教案》word版
- 貴州省就業(yè)失業(yè)登記表
- 預(yù)防電信詐騙網(wǎng)絡(luò)詐騙講座PPT幻燈片課件
- 反興奮劑知識(shí)試題及答案
- 初中八年級(jí)上冊(cè)音樂課件4.2欣賞沃爾塔瓦河(14張)ppt課件
- 人教版五年級(jí)數(shù)學(xué)下冊(cè)每個(gè)單元教材分析(共九個(gè)單元)
- 深圳氫燃料共享單車項(xiàng)目投資計(jì)劃書【參考范文】
- 主要腸內(nèi)營(yíng)養(yǎng)制劑成分比較
評(píng)論
0/150
提交評(píng)論