




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、6. Markov ChainState SpaceThe state space is the set of values a random variable X can take. E.g.: integer 1 to 6 in a dice experiment, or the locations of a random walker, or the coordinates of set of molecules, or spin configurations of the Ising model.Markov ProcessA stochastic process is a seque
2、nce of random variables X0, X1, , Xn, The process is characterized by the joint probability distribution P(X0, X1, )If P(Xn+1|X0, X1, Xn) = P(Xn+1|Xn) then it is a Markov process.Markov ChainA Markov chain is completely characterized by an initial probability distribution P0(X0), and the transition
3、matrix W(Xn-Xn+1) = P(Xn+1|Xn).Thus, the probability that a sequence of X0=a, X1=b, , Xn= n appears, is P0(a)W(a-b)W(b-c) W(.-n).Properties of Transition MatrixSince W(x-y) = P(y|x) is a conditional probability, we must have W(x-y) 0.Probability of going anywhere is 1, soy W(x - Y) = 1.EvolutionGive
4、n the current distribution, Pn(X), the distribution at the next step, n +1, is obtained fromPn+1(Y) = x Pn(X) W( X - Y) In matrix form, this is Pn+1 = Pn W.Chapman-Kolmogorov EquationWe note that the conditional probability of state after k step is P(Xk=b|X0=a) = Wkab. We havewhich, in matrix notati
5、on, is Wk+s=Wk Ws.Probability Distribution of States at Step nGiven the probability distribution P0 initially at n = 0, the distribution at step n isPn = P0 Wn (n-th matrix power of W)Example: Random WalkerA drinking walker walks in discrete steps. In each step, he has probability walk to the right,
6、 and probability to the left. He doesnt remember his previous steps.The QuestionsUnder what conditions Pn(X) is independent of time (or step) n and initial condition P0? And approaches a limit P(X)?Given W(X-X), compute P(X)Given P(X), how to construct W(X-X) ?Some Definitions: Recurrence and Transi
7、enceA state i is recurrent if we visit it infinite number of times when n - .P(Xn = i for infinitely many n) = 1.For a transient state j, we visit it only a finite number of times as n - . IrreducibleFrom any state I and any other state J, there is a nonzero probability that one can go from I to J a
8、fter some n steps.I.e., WnIJ 0, for some n.Absorbing StateA state, once it is there, can not move to anywhere else.Closed subset: once it is there, there is no escape from the set.Example125431,5 is closed, 3 is closed/absorbing.It is not irreducible. Aperiodic StateA state I is called aperiodic if
9、WnII 0 for all sufficiently large n.This means that probability for state I to go back to I after n step for all n nmax is nonzero.Invariant or Equilibrium DistributionIfwe say that the probability distribution P(x) is invariant with respect to the transition matrix W(x-x ).Convergence to Equilibriu
10、mLet W be irreducible and aperiodic, and suppose that W has an invariant distribution p. Then for any initial distribution, P(Xn=j) - pj, as n - for all j.This theorem tell us when do we expect a unique limiting distribution.Limit DistributionOne also hasindependent of the initial state i, such that
11、 P = P W, Pj = pj.Condition for Approaching EquilibriumThe irreducible and aperiodic condition can be combined to mean:For all state j and k, Wnjk 0 for sufficiently large n.This is also referred to as ergodic.Urn ExampleThere are two urns. Urn A has two balls, urn B has three balls. One draws a bal
12、l in each and switch them. There are two white balls, and three red balls.What are the states, the transition matrix W, and the equilibrium distribution P?The Transition MatrixNote that elements of W2 are all positive.12311/61/32/3Eigenvalue ProblemDetermine P is an eigenvalue problem:P = P WThe sol
13、ution isP1 = 1/10, P2 = 6/10, P3 = 3/10.What is the physical meaning of the above numbers?Convergence to Equilibrium DistributionLet P0 = (1, 0, 0)P1 = P0 W = (0, 1, 0)P2 = P1 W = P0 W2 = (1/6,1/2,1/3)P3 = P2 W = P0 W3 = (1/12,23/36,5/18)P4 = P3 W = P0 W4 = (0.106,0.587,0.3)P5 = P4 W = P0 W5 = (0.10
14、07, 0.5986, 0.3007) . . . P0 W = (0.1, 0.6, 0.3)Time ReversalSuppose X0, X1, , XN is a Markov chain with (irreducible) transition matrix W(X-X) and an equilibrium distribution P(X), what transition probability would result in a time-reversed process Y0 = XN, Y1=XN-1, YN=X0?AnswerThe new WR should be
15、 such thatP(x) WR(x-x) = P(x)W(x-x) (*)Original process P(x0,x1,.,xN) = P(x0) W(x0-x1) W(x1-x2) W(xN-1-xN) must be equal to reversed process P(xN,xN-1,x0) = P(XN) WR(XN-XN-1) WR(xN-1-XN-2) WR(x1-x0). The equation (*) satisfies this.Reversible Markov ChainA Markov chain is said reversible if it satis
16、fies detailed balance:P(X) W(X - Y) = P(Y) W(Y -X)Nearly all the Markov chains used in Monte Carlo method satisfy this condition by construction.An example of a chain that does not satisfy detailed balance1232/31/32/31/32/31/3Equilibrium distribution is P=(1/3,1/3,1/3). The reverse chain has transition matrix WR = WT (transpose of W). WR W.Realization of Samples in Monte Carlo and Markov Chain The
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 大連醫(yī)科大學(xué)《觀賞園藝》2023-2024學(xué)年第二學(xué)期期末試卷
- 昆玉職業(yè)技術(shù)學(xué)院《古代女性文學(xué)研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 瀘州職業(yè)技術(shù)學(xué)院《中醫(yī)臨床醫(yī)學(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 杭州師范大學(xué)錢(qián)江學(xué)院《大學(xué)語(yǔ)文一》2023-2024學(xué)年第二學(xué)期期末試卷
- 阿壩藏族羌族自治州若爾蓋縣2025屆四下數(shù)學(xué)期末聯(lián)考試題含解析
- 天津醫(yī)學(xué)高等專(zhuān)科學(xué)校《安全檢測(cè)與監(jiān)控》2023-2024學(xué)年第二學(xué)期期末試卷
- 肅寧縣2024-2025學(xué)年數(shù)學(xué)三下期末調(diào)研試題含解析
- 浙江經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院《營(yíng)銷(xiāo)實(shí)踐前沿講座》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南工程學(xué)院應(yīng)用技術(shù)學(xué)院《園藝植物分類(lèi)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣西河池市環(huán)江縣2024-2025學(xué)年三下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析
- MicrosoftOffice2016簡(jiǎn)體中文版下載及使用
- 夾膠玻璃作業(yè)指導(dǎo)書(shū)
- NLP高效能溝通影響力集團(tuán)李炫華
- 預(yù)應(yīng)力錨索安全專(zhuān)項(xiàng)施工方案
- 站長(zhǎng)辦公會(huì)議事規(guī)則
- 在泰居留90天移民局報(bào)到表格(TM47)
- 銅陵職業(yè)技術(shù)學(xué)院“十三五”發(fā)展規(guī)劃編制工作方案
- EDTA絡(luò)合滴定法測(cè)定銀合金中的銀
- 某屠宰場(chǎng)廢水處理工藝設(shè)計(jì)_畢業(yè)設(shè)計(jì)(論文)
- 江蘇省無(wú)錫市2020年中考語(yǔ)文真題試題(含解析)
- 癌癥患者生命質(zhì)量量表FACT-G v4
評(píng)論
0/150
提交評(píng)論