版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直線:,.其中滿足條件的所有直線的編號有( )ABCD2如圖,在中,是上一點,若,則實數(shù)的值為( )A
2、BCD3已知為虛數(shù)單位,若復數(shù)滿足,則( )ABCD4在一個數(shù)列中,如果,都有(為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,叫做這個數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,公積為,則( )ABCD5如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內一點,則三棱錐的正視圖與側視圖的面積之和為( )A2B3C4D56設i為數(shù)單位,為z的共軛復數(shù),若,則( )ABCD7已知底面為正方形的四棱錐,其一條側棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的( )ABCD8已知集合,定義集合,則等于( )ABCD9若不相等的非零實數(shù),成等差數(shù)列,且,成等比數(shù)列,則( )ABC2D10的展開式中的系數(shù)是-10,則實
3、數(shù)( )A2B1C-1D-211已知ABC中,點P為BC邊上的動點,則的最小值為()A2BCD12已知函數(shù),當時,不等式恒成立,則實數(shù)a的取值范圍為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13關于函數(shù)有下列四個命題:函數(shù)在上是增函數(shù);函數(shù)的圖象關于中心對稱;不存在斜率小于且與函數(shù)的圖象相切的直線;函數(shù)的導函數(shù)不存在極小值.其中正確的命題有_.(寫出所有正確命題的序號)14如圖是九位評委打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均分為_15如果函數(shù)(,且,)在區(qū)間上單調遞減,那么的最大值為_16(5分)在平面直角坐標系中,過點作傾斜角為的直線,已知直
4、線與圓相交于兩點,則弦的長等于_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知橢圓的左、右頂點分別為、,上、下頂點分別為,為其右焦點,且該橢圓的離心率為;()求橢圓的標準方程;()過點作斜率為的直線交橢圓于軸上方的點,交直線于點,直線與橢圓的另一個交點為,直線與直線交于點若,求取值范圍18(12分)已知函數(shù),.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數(shù),當時,討論零點的個數(shù).19(12分)已知函數(shù).(1)求不等式的解集;(2)若關于的不等式在上恒成立,求實數(shù)的取值范圍.20(12分)在中,角的對邊分別為,且滿足.()求角的大小;()若的
5、面積為,求和的值.21(12分)設橢圓的左右焦點分別為,離心率是,動點在橢圓上運動,當軸時,.(1)求橢圓的方程;(2)延長分別交橢圓于點(不重合).設,求的最小值.22(10分)已知圓,定點 ,為平面內一動點,以線段為直徑的圓內切于圓,設動點的軌跡為曲線(1)求曲線的方程(2)過點的直線與交于兩點,已知點,直線分別與直線交于兩點,線段的中點是否在定直線上,若存在,求出該直線方程;若不是,說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時滿足條件,即可得
6、出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,而,與的面積相等,或,即到直線的距離或時滿足條件,根據(jù)點到直線距離可知,滿足條件.故選:D.【點睛】本題考查直線與圓的位置關系的應用,涉及點到直線的距離公式.2C【解析】由題意,可根據(jù)向量運算法則得到(1m),從而由向量分解的唯一性得出關于t的方程,求出t的值.【詳解】由題意及圖,又,所以,(1m),又t,所以,解得m,t,故選C【點睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關鍵,本題屬于基礎題.3A【解析】分析:題設中復數(shù)滿足的等式可以化為,利用復數(shù)的四則運算可以求出.
7、詳解:由題設有,故,故選A.點睛:本題考查復數(shù)的四則運算和復數(shù)概念中的共軛復數(shù),屬于基礎題.4B【解析】計算出的值,推導出,再由,結合數(shù)列的周期性可求得數(shù)列的前項和.【詳解】由題意可知,則對任意的,則,由,得,因此,.故選:B.【點睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導出數(shù)列的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.5A【解析】根據(jù)幾何體分析正視圖和側視圖的形狀,結合題干中的數(shù)據(jù)可計算出結果.【詳解】由三視圖的性質和定義知,三棱錐的正視圖與側視圖都是底邊長為高為的三角形,其面積都是,正視圖與側視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側視圖的面積和,解答
8、的關鍵就是分析出正視圖和側視圖的形狀,考查空間想象能力與計算能力,屬于基礎題.6A【解析】由復數(shù)的除法求出,然后計算【詳解】,故選:A.【點睛】本題考查復數(shù)的乘除法運算,考查共軛復數(shù)的概念,掌握復數(shù)的運算法則是解題關鍵7C【解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖8C【解析】根據(jù)定義,求出,即可求出結論.【詳解】因為集合,所以,則,所以.故選:C.【點睛】本題考查集合的新定義運算,理解新定義是解題的關鍵,屬于基礎題.9A【解析】由題意,可得,消去得,可得,繼而得到,代入即得解【詳解】由,成等差數(shù)列,所以,又,成等比數(shù)列,所以,消去得,所以,解得
9、或,因為,是不相等的非零實數(shù),所以,此時,所以故選:A【點睛】本題考查了等差等比數(shù)列的綜合應用,考查了學生概念理解,轉化劃歸,數(shù)學運算的能力,屬于中檔題.10C【解析】利用通項公式找到的系數(shù),令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【點睛】本題考查求二項展開式中特定項的系數(shù),考查學生的運算求解能力,是一道容易題.11D【解析】以BC的中點為坐標原點,建立直角坐標系,可得,設,運用向量的坐標表示,求得點A的軌跡,進而得到關于a的二次函數(shù),可得最小值【詳解】以BC的中點為坐標原點,建立如圖的直角坐標系,可得,設,由,可得,即,則,當時,的最小值為故選D【點
10、睛】本題考查向量數(shù)量積的坐標表示,考查轉化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題12D【解析】由變形可得,可知函數(shù)在為增函數(shù), 由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時是單調增函數(shù).則恒成立. .令,則時,單調遞減,時單調遞增.故選:D.【點睛】本題考查構造函數(shù),借助單調性定義判斷新函數(shù)的單調性問題,考查恒成立時求解參數(shù)問題,考查學生的分析問題的能力和計算求解的能力,難度較難.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由單調性、對稱性概念、導數(shù)的幾何意義、導數(shù)與極值的關系進行判斷【詳解】函數(shù)的定義域是,由于,在上遞增,函數(shù)在上是遞增,正確;,函數(shù)的
11、圖象關于中心對稱,正確;,時取等號,正確;,設,則,顯然是即的極小值點,錯誤故答案為:.【點睛】本題考查函數(shù)的單調性、對稱性,考查導數(shù)的幾何意義、導數(shù)與極值,解題時按照相關概念判斷即可,屬于中檔題141【解析】寫出莖葉圖對應的所有的數(shù),去掉最高分,最低分,再求平均分【詳解】解:所有的數(shù)為:77,78,82,84,84,86,88,93,94,共9個數(shù),去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個數(shù),平均分為,故答案為1【點睛】本題考查莖葉圖及平均數(shù)的計算,屬于基礎題1518【解析】根據(jù)函數(shù)單調性的性質,分一次函數(shù)和一元二次函數(shù)的對稱性和單調區(qū)間的關系建立不等式,利用
12、基本不等式求解即可.【詳解】解:當時, ,在區(qū)間上單調遞減,則,即,則.當時, ,函數(shù)開口向上,對稱軸為,因為在區(qū)間上單調遞減,則,因為,則,整理得,又因為,則.所以即,所以當且僅當時等號成立.綜上所述,的最大值為18.故答案為:18【點睛】本題主要考查一次函數(shù)與二次函數(shù)的單調性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.16【解析】方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則方法二:依題意,知直線的方程為,代入圓的方程化簡得,設,則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.三、解答題:共70分。解答應寫出文字說明、證明過程或演
13、算步驟。17();(),【解析】()由題意可得,的坐標,結合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;()設直線,求得的坐標,再設直線,求出點的坐標,寫出的方程,聯(lián)立與,可求出的坐標,由,可得關于的函數(shù)式,由單調性可得取值范圍【詳解】(),由,得,又,解得:,橢圓的標準方程為;()設直線,則與直線的交點,又,設直線,聯(lián)立,消可得解得,聯(lián)立,得,直線,聯(lián)立,解得,函數(shù)在上單調遞增,【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查運算求解能力,意在考查學生對這些知識的理解掌握水平和分析推理計算能力18(1);(2)見解析.【解析】(1)設切點坐標為,然后根據(jù)可解得實數(shù)
14、的值;(2)令,然后對實數(shù)進行分類討論,結合和的符號來確定函數(shù)的零點個數(shù).【詳解】(1),設曲線與軸相切于點,則,即,解得.所以,當時,軸為曲線的切線;(2)令,則,由,得.當時,此時,函數(shù)為增函數(shù);當時,此時,函數(shù)為減函數(shù).,.當,即當時,函數(shù)有一個零點;當,即當時,函數(shù)有兩個零點;當,即當時,函數(shù)有三個零點;當,即當時,函數(shù)有兩個零點;當,即當時,函數(shù)只有一個零點.綜上所述,當或時,函數(shù)只有一個零點;當或時,函數(shù)有兩個零點;當時,函數(shù)有三個零點.【點睛】本題考查了利用導數(shù)的幾何意義研究切線方程和利用導數(shù)研究函數(shù)的單調性與極值,關鍵是分類討論思想的應用,屬難題19(1)或; (2).【解析】
15、(1)利用絕對值的幾何意義,將不等式,轉化為不等式或或求解.(2)根據(jù)-2在R上恒成立,由絕對值三角不等式求得的最小值即可.【詳解】(1)原不等式等價于或或,解得:或,不等式的解集為或.(2)因為-2在R上恒成立,而,所以,解得,所以實數(shù)的取值范圍是.【點睛】本題主要考查絕對值不等式的解法和不等式恒成立問題,還考查了運算求解的能力,屬于中檔題.20();(),.【解析】()運用正弦定理和二角和的正弦公式,化簡,即可求出角的大小;()通過面積公式和 ,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】()由正弦定理可知:,已知,所以,,所以有.(),由余弦定理可知:,.【點睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數(shù)關系,考查了運算能力.21(1);(2)【解析】(1)根據(jù)題意直接計算得到,得到橢圓方程.(2)不妨設,且,設,代入 數(shù)據(jù)化簡得到,故,得到答案.【詳解】(1),所以,化簡得,所以,所以方程為;(2)由題意得,不在軸上,不妨設,且,設,所以由,得,所以,由,得,代入,化簡得:,由于,所以,同理可得,所以,所以當時,最小為【點睛】本題考查了橢圓方程,橢圓中的向量運算和最值,意在考查學生的計算能力和綜合
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度生態(tài)園區(qū)沉降監(jiān)測與可持續(xù)發(fā)展合同范本4篇
- 2025年度瓷磚品牌形象設計與廣告投放合同3篇
- 2024石料運輸合同違約責任范本3篇
- 2025年度政府機構公務出差協(xié)議書模板4篇
- 2025年度智慧家居SAAS解決方案銷售服務合同3篇
- 2024版?zhèn)€人之間借款合同書
- 2025年度幼兒園廚房設備租賃及運營管理合同4篇
- 2024門窗行業(yè)綠色認證與環(huán)保評估合同3篇
- 2025年度智能設備品牌代理授權合同協(xié)議4篇
- 2025年度智能交通系統(tǒng)出資股東協(xié)議范本4篇
- 電子煙研發(fā)合作合同
- GB/T 15568-2024通用型片狀模塑料(SMC)
- 2024年黑龍江省哈爾濱市中考數(shù)學試卷(附答案)
- 2024政務服務綜合窗口人員能力與服務規(guī)范考試試題
- 第十五屆全國石油和化工行業(yè)職業(yè)技能競賽(化工總控工)考試題庫-下(判斷題)
- 滿意度測評管理制度
- 羊肉購銷合同范本
- 2024五年級下冊語文組詞表
- 2024 smart社區(qū)運營全案服務項目
- JT∕T 1477-2023 系列2集裝箱 角件
- JT-T-566-2004軌道式集裝箱門式起重機安全規(guī)程
評論
0/150
提交評論