2021-2022學(xué)年云浮市重點(diǎn)高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年云浮市重點(diǎn)高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年云浮市重點(diǎn)高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年云浮市重點(diǎn)高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年云浮市重點(diǎn)高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時(shí)請(qǐng)按要求用筆。3請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知三棱錐中,是等邊三角形,則三棱錐的外接球的表面積為( )ABCD2如圖,四邊形為平行四邊形,為中點(diǎn),為的三等分

2、點(diǎn)(靠近)若,則的值為( )ABCD3已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù))有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )ABCD4已知直四棱柱的所有棱長(zhǎng)相等,則直線與平面所成角的正切值等于( )ABCD5已知,則下列說法中正確的是( )A是假命題B是真命題C是真命題D是假命題6設(shè)函數(shù)定義域?yàn)槿w實(shí)數(shù),令有以下6個(gè)論斷:是奇函數(shù)時(shí),是奇函數(shù);是偶函數(shù)時(shí),是奇函數(shù);是偶函數(shù)時(shí),是偶函數(shù);是奇函數(shù)時(shí),是偶函數(shù)是偶函數(shù);對(duì)任意的實(shí)數(shù),那么正確論斷的編號(hào)是( )ABCD7如圖,在中,點(diǎn),分別為,的中點(diǎn),若,且滿足,則等于( )A2BCD8我國(guó)著名數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容

3、是“每個(gè)大于的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”( 注:如果一個(gè)大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個(gè)整數(shù)為素?cái)?shù)),在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,則的概率是( )ABCD9已知集合,則等于( )ABCD10已知向量,=(1,),且在方向上的投影為,則等于( )A2B1CD011設(shè)數(shù)列是等差數(shù)列,.則這個(gè)數(shù)列的前7項(xiàng)和等于( )A12B21C24D3612某幾何體的三視圖如圖所示,若圖中小正方形的邊長(zhǎng)均為1,則該幾何體的體積是ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知雙曲線的左右焦點(diǎn)分別為,過的直線與雙曲線左支交于兩點(diǎn),的內(nèi)切圓的圓心的縱坐標(biāo)為,則雙曲線的離心率

4、為_.14已知為橢圓上的一個(gè)動(dòng)點(diǎn),設(shè)直線和分別與直線交于,兩點(diǎn),若與的面積相等,則線段的長(zhǎng)為_.15在的展開式中,的系數(shù)為_用數(shù)字作答16(5分)如圖是一個(gè)算法的流程圖,若輸出的值是,則輸入的值為_ 三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)函數(shù)(1)求不等式的解集;(2)若的最小值為,且,求的最小值18(12分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值19(12分)在中,角A、B、C的對(duì)邊分別為a、b、c,且. (1)求角A的大?。唬?)若,的平分線與交于點(diǎn)D,與的外接圓交于點(diǎn)E(異于點(diǎn)A),求的值.20(12分)

5、已知.(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.21(12分)在ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b(a2+c2b2)a2ccosC+ac2cosA(1)求角B的大??;(2)若ABC外接圓的半徑為,求ABC面積的最大值.22(10分)已知函數(shù)(),是的導(dǎo)數(shù).(1)當(dāng)時(shí),令,為的導(dǎo)數(shù).證明:在區(qū)間存在唯一的極小值點(diǎn);(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】根據(jù)底面為等邊三角形,取中點(diǎn),可證明平面,從而,即可證明三棱錐為正三棱錐.取底面

6、等邊的重心為,可求得到平面的距離,畫出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進(jìn)而得球的表面積.【詳解】設(shè)為中點(diǎn),是等邊三角形,所以,又因?yàn)?,且,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設(shè)球的半徑為,在中,即,解得,所以三棱錐的外接球表面積為,故選:D.【點(diǎn)睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計(jì)算,正三棱錐的外接球半徑求法,球的表面積求法,對(duì)空間想象能力要求較高,屬于中檔題.2D【解析】使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出【詳解】

7、解:,又解得,所以故選:D【點(diǎn)睛】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題3B【解析】求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點(diǎn)存在定理可確定參數(shù)范圍【詳解】,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,在上只有一個(gè)極大值也是最大值,顯然時(shí),時(shí),因此要使函數(shù)有兩個(gè)零點(diǎn),則,故選:B【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點(diǎn)存在定理確定參數(shù)范圍4D【解析】以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,取中點(diǎn),以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,

8、建立空間直角坐標(biāo)系設(shè),則,設(shè)平面的法向量為,則取,得設(shè)直線與平面所成角為,則,直線與平面所成角的正切值等于故選:D【點(diǎn)睛】本題考查了向量法求解線面角,考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5D【解析】舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案【詳解】當(dāng)時(shí),故命題為假命題;記f(x)exx的導(dǎo)數(shù)為f(x)ex,易知f(x)exx(,0)上遞減,在(0,)上遞增,f(x)f(0)0,即,故命題為真命題;是假命題故選D【點(diǎn)睛】本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對(duì)函數(shù)的圖象與性質(zhì),是基礎(chǔ)題6A【解析】根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性

9、并證明.【詳解】當(dāng)是偶函數(shù),則,所以,所以是偶函數(shù);當(dāng)是奇函數(shù)時(shí),則,所以,所以是偶函數(shù);當(dāng)為非奇非偶函數(shù)時(shí),例如:,則,此時(shí),故錯(cuò)誤;故正確.故選:A【點(diǎn)睛】本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關(guān)鍵,屬于基礎(chǔ)題.7D【解析】選取為基底,其他向量都用基底表示后進(jìn)行運(yùn)算【詳解】由題意是的重心, ,故選:D【點(diǎn)睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個(gè)不共線向量作為基底,其他向量都用基底表示參與運(yùn)算,這樣做目標(biāo)明確,易于操作8B【解析】先列舉出不超過的素?cái)?shù),并列舉出所有的基本事件以及事件“在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得

10、所求事件的概率.【詳解】不超過的素?cái)?shù)有:、,在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù),所有的基本事件有:、,共種情況,其中,事件“在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,且”包含的基本事件有:、,共種情況,因此,所求事件的概率為.故選:B.【點(diǎn)睛】本題考查古典概型概率的計(jì)算,一般利用列舉法列舉出基本事件,考查計(jì)算能力,屬于基礎(chǔ)題.9A【解析】進(jìn)行交集的運(yùn)算即可【詳解】,1,2,1,故選:【點(diǎn)睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運(yùn)算,考查了計(jì)算能力,屬于基礎(chǔ)題10B【解析】先求出,再利用投影公式求解即可.【詳解】解:由已知得,由在方向上的投影為,得,則.故答案為:B.【點(diǎn)睛

11、】本題考查向量的幾何意義,考查投影公式的應(yīng)用,是基礎(chǔ)題.11B【解析】根據(jù)等差數(shù)列的性質(zhì)可得,由等差數(shù)列求和公式可得結(jié)果.【詳解】因?yàn)閿?shù)列是等差數(shù)列,所以,即,又,所以,故故選:B【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,性質(zhì),等差數(shù)列的和,屬于中檔題.12B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點(diǎn)睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.二、填

12、空題:本題共4小題,每小題5分,共20分。132【解析】由題意畫出圖形,設(shè)內(nèi)切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質(zhì)結(jié)臺(tái)雙曲線的定義,求得的內(nèi)切圓的圓心的縱坐標(biāo),結(jié)合已知列式,即可求得雙曲線的離心率.【詳解】設(shè)內(nèi)切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長(zhǎng)為圓的半徑,由,得,與重合,即,聯(lián)立解得:,又因圓心的縱坐標(biāo)為,.故答案為:【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),考查數(shù)形結(jié)合思想與運(yùn)算求解能力,屬于中檔題.14【解析】先設(shè)點(diǎn)坐標(biāo),由三角形面積相等得出兩個(gè)三角形的邊之間的比例關(guān)系,這個(gè)比例關(guān)系又可用線段上點(diǎn)的坐標(biāo)表示出來,從而可求得點(diǎn)的橫坐標(biāo),代入橢圓方程得

13、縱坐標(biāo),然后可得【詳解】如圖,設(shè),由,得,由得,解得,又在橢圓上,故答案為:【點(diǎn)睛】本題考查直線與橢圓相交問題,解題時(shí)由三角形面積相等得出線段長(zhǎng)的比例關(guān)系,解題是由把線段長(zhǎng)的比例關(guān)系用點(diǎn)的橫坐標(biāo)表示151【解析】利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的通項(xiàng),令,求出展開式中的系數(shù)【詳解】二項(xiàng)展開式的通項(xiàng)為 令得的系數(shù)為 故答案為1【點(diǎn)睛】利用二項(xiàng)展開式的通項(xiàng)公式是解決二項(xiàng)展開式的特定項(xiàng)問題的工具16或【解析】依題意,當(dāng)時(shí),由,即,解得;當(dāng)時(shí),由,解得或(舍去)綜上,得或三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)或(2)最小值為【解析】(1)討論,三種情況,分別計(jì)算得到

14、答案.(2)計(jì)算得到,再利用均值不等式計(jì)算得到答案.【詳解】(1)當(dāng)時(shí),由,解得;當(dāng)時(shí),由,解得;當(dāng)時(shí),由,解得所以所求不等式的解集為或(2)根據(jù)函數(shù)圖像知:當(dāng)時(shí),所以因?yàn)?,由,可知,所以,?dāng)且僅當(dāng),時(shí),等號(hào)成立所以的最小值為【點(diǎn)睛】本題考查了解絕對(duì)值不等式,函數(shù)最值,均值不等式,意在考查學(xué)生對(duì)于不等式,函數(shù)知識(shí)的綜合應(yīng)用.18(1)證明見解析;(2)【解析】(1)取BC的中點(diǎn)O,則,由是等邊三角形,得,從而得到平面,由此能證明(2)以,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求得二面角的余弦值,得到結(jié)果.【詳解】(1)取BC的中點(diǎn)O,連接,由于與是等邊三角形,所以有,且,所以

15、平面,平面,所以(2)設(shè),是全等的等邊三角形,所以,又,由余弦定理可得,在中,有,所以以,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,如圖所示,則,設(shè)平面的一個(gè)法向量為,則,令,則,又平面的一個(gè)法向量為,所以二面角的余弦值為,即二面角的余弦值為【點(diǎn)睛】該題考查的是有關(guān)立體幾何的問題,涉及到的知識(shí)點(diǎn)有利用線面垂直證明線性垂直,利用向量法求二面角的余弦值,屬于中檔題目.19(1);(2)【解析】(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因?yàn)椋?所以, 即,即,所以.(2),. 所

16、以,從而.所以,.不妨設(shè),O為外接圓圓心則AO=1,.在中,由正弦定理知,有. 即; 在中,由,從而.所以.【點(diǎn)睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.20(1)答案不唯一,具體見解析(2)【解析】(1)分類討論,利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間.(2)分離出參數(shù)后,轉(zhuǎn)化為函數(shù)的最值問題解決,注意函數(shù)定義域.【詳解】(1)由得或當(dāng)時(shí),由,得.由,得或此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.當(dāng)時(shí),由,得由,得或此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和綜上:當(dāng)時(shí),單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.(2)依題意,不等式恒成立

17、等價(jià)于在上恒成立,可得,在上恒成立,設(shè),則令,得,(舍)當(dāng)時(shí),;當(dāng)時(shí),當(dāng)變化時(shí),變化情況如下表:10單調(diào)遞增單調(diào)遞減當(dāng)時(shí),取得最大值,.的取值范圍是.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究不等式的恒成立問題,屬于中檔題.21(1)B(2)【解析】(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進(jìn)行化簡(jiǎn)可求cosB,進(jìn)而可求B;(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.【詳解】(1)因?yàn)閎(a2+c2b2)ca2cosC+ac2cosA,即2bcosBacosC+ccosA由正弦定理可得,2sinBcosBsinAcosC+sinCcosAsin(A+C)sinB,因?yàn)?,所以,所以B;(2)由正弦定理可得,b2RsinB2,由余弦定理可得,b2a2+c22accosB,即a2+c2ac4,因?yàn)閍2+c22ac,所以4a2+c2acac,當(dāng)且僅當(dāng)ac時(shí)取等號(hào),即ac的最大值4,所以ABC面積S即面積的最大值.【點(diǎn)睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應(yīng)用,屬于中檔題.22(1)見解析;(2)【解析】(1)設(shè),注意到在上單增,再利用零點(diǎn)存在性定理即可解決;(2)函數(shù)在上單調(diào)遞減,則在恒成立,即在上恒成立,構(gòu)造

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論