版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、棱錐概念和性質(zhì)說(shuō)課稿棱錐概念和性質(zhì)說(shuō)課稿棱錐概念和性質(zhì)說(shuō)課稿11、教材的地位和作用“棱錐”這節(jié)教材是立體幾何的第2.2節(jié)它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識(shí),掌握若干基本圖形以及棱柱的概念和性質(zhì)的基礎(chǔ)上進(jìn)一步研究多面體的又一常見幾何體。它既是線面關(guān)系的具體化,又為以后進(jìn)一步學(xué)習(xí)棱臺(tái)的概念和性質(zhì)奠定了基礎(chǔ)。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時(shí),這節(jié)課也是進(jìn)一步培養(yǎng)高一學(xué)生的空間想象能力和邏輯思維能力的重要內(nèi)容。2、教學(xué)內(nèi)容本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運(yùn)用正棱錐的性質(zhì)解決有關(guān)計(jì)算和證明問(wèn)題。通過(guò)觀察具體幾何體模型引出棱錐的概念;通過(guò)棱柱與棱錐類
2、比引入正棱錐的概念;通過(guò)對(duì)具體問(wèn)題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問(wèn)題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會(huì)感到自然,好接受。對(duì)教材的內(nèi)容則有所增減,處理方式也有適當(dāng)改變。3、教學(xué)目的根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點(diǎn)和高一學(xué)生對(duì)空間圖形的認(rèn)知特點(diǎn),我把本節(jié)課的教學(xué)目的確定為:(1)通過(guò)棱錐,正棱錐概念的教學(xué),培養(yǎng)學(xué)生知識(shí)遷移的能力及數(shù)學(xué)表達(dá)能力;(2)領(lǐng)會(huì)應(yīng)用正棱錐的性質(zhì)解題的一般方法,初步學(xué)會(huì)應(yīng)用性質(zhì)解決相關(guān)問(wèn)題;(3)通過(guò)對(duì)正棱錐中相關(guān)元素的相互轉(zhuǎn)化的研究,提高學(xué)生的空間想象能力以及空間問(wèn)題向平面轉(zhuǎn)化的能力;(4)進(jìn)行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)
3、的積極性。4、教學(xué)重點(diǎn),難點(diǎn),關(guān)鍵對(duì)于高一學(xué)生來(lái)說(shuō),空間觀念正逐步形成。而實(shí)際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點(diǎn)是通過(guò)對(duì)具體問(wèn)題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實(shí)質(zhì);而如何將空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題來(lái)解決?本節(jié)課則通過(guò)抓住正棱錐中的基本圖形這一難點(diǎn)實(shí)現(xiàn)突破,教學(xué)的關(guān)鍵是正確認(rèn)識(shí)正棱錐的線線,線面垂直關(guān)系。二、教法分析類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型、學(xué)會(huì)應(yīng)用、發(fā)展?jié)撃?、形成能力、提高素質(zhì)。由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進(jìn)一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時(shí)機(jī),因此,在教學(xué)中,一方面通過(guò)電教手段,把某些
4、概念,性質(zhì)或知識(shí)關(guān)鍵點(diǎn)制成了投影片,既節(jié)省時(shí)間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學(xué)中并沒有采取把正棱錐性質(zhì)同時(shí)全部講授給學(xué)生的做法,而是通過(guò)具體問(wèn)題的分析與處理,將正棱錐最重要的性質(zhì)這一知識(shí)點(diǎn)發(fā)現(xiàn)的全過(guò)程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會(huì)知識(shí)發(fā)生、發(fā)展的過(guò)程及其規(guī)律,從而提高學(xué)生分析和解決實(shí)際問(wèn)題的能力。三、學(xué)法指導(dǎo)教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點(diǎn),這節(jié)課主要是教給學(xué)生“動(dòng)手做,動(dòng)腦想;嚴(yán)格證,多訓(xùn)練,勤鉆研?!钡难杏懯綄W(xué)習(xí)方法。這樣做,增加了學(xué)生主動(dòng)參與的機(jī)會(huì),增強(qiáng)了參與意識(shí),教給學(xué)生獲取知識(shí)的
5、途徑;思考問(wèn)題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,“練”有所“獲”。學(xué)生才會(huì)逐步感到數(shù)學(xué)美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。四、教學(xué)流程1、課題引入上一節(jié)課我們學(xué)習(xí)了棱柱的有關(guān)知識(shí),當(dāng)棱柱的上底面縮為一點(diǎn)時(shí),想一想,其底面,側(cè)棱有何變化?(可將金字塔,帳篷的圖片以及不同棱錐的模型依次出示給學(xué)生)將現(xiàn)實(shí)生活的實(shí)例抽象成數(shù)學(xué)模型,獲得新的幾何體DD棱錐。(板書課題)2、引導(dǎo)啟發(fā)請(qǐng)同學(xué)們描述一下棱錐的本質(zhì)特征?(學(xué)生觀察模型,提示學(xué)生可以從底面,側(cè)面的形狀特點(diǎn)加以描述)結(jié)
6、論:(1)有一個(gè)面是多邊形;(2)其余各面是三角形且有一個(gè)公共頂點(diǎn)。由滿足(1)、(2)的面所圍成的幾何體叫做棱錐。(設(shè)計(jì)意圖:由觀察具體事物,經(jīng)過(guò)積極思維,歸納、抽象出事的本質(zhì)屬性,形成概念,培養(yǎng)學(xué)生抽象思維能力,提高學(xué)習(xí)效果。)棱錐概念和性質(zhì)說(shuō)課稿2今天我說(shuō)課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)棱錐的第一課時(shí):棱錐的概念和性質(zhì)。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對(duì)本課的教學(xué)設(shè)計(jì)進(jìn)行說(shuō)明。一、說(shuō)教材1、本節(jié)在教材中的地位和作用:本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識(shí),同時(shí)培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的
7、能力。著名的生物學(xué)家達(dá)爾文說(shuō):“最有價(jià)值的知識(shí)是關(guān)于方法和能力的知識(shí)”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。2. 教學(xué)目標(biāo)確定:(1)能力訓(xùn)練要求使學(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高的概念。使學(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。(2)德育滲透目標(biāo)培養(yǎng)學(xué)生善于通過(guò)觀察分析實(shí)物形狀到歸納其性質(zhì)的能力。提高學(xué)生對(duì)事物的感性認(rèn)識(shí)到理性認(rèn)識(shí)的能力。培養(yǎng)學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀點(diǎn)。3. 教學(xué)重點(diǎn)、難點(diǎn)確定:重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。難 點(diǎn):培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。二、說(shuō)教學(xué)方法和手段1、教法:“以學(xué)生參與
8、為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。在教學(xué)中根據(jù)高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。2、教學(xué)手段:根據(jù)教學(xué)大綱中“堅(jiān)持啟發(fā)式,反對(duì)注入式”的教學(xué)要求,針對(duì)本節(jié)課概念性強(qiáng),思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計(jì)課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達(dá)到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營(yíng)造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識(shí),掌握規(guī)律、主動(dòng)發(fā)現(xiàn)、積極探索。三、說(shuō)學(xué)法:這節(jié)課的核心是
9、棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認(rèn)識(shí)規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認(rèn)知結(jié)構(gòu)。四、 學(xué)程序:復(fù)習(xí)引入新課1.棱柱的性質(zhì):(1)側(cè)棱都相等,側(cè)面是平行四邊形(2)兩個(gè)底面與平行于底面的截面是全等的多邊形(3)過(guò)不相鄰的兩條側(cè)棱的截面是平行四邊形2.幾個(gè)重要的四棱柱:平行六面體、直平行六面體、長(zhǎng)方體、正方體思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì)是什么樣的體呢?講授新課1、棱錐的基本概念(1).棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對(duì)角面的概念(2).棱錐的表示方法、分類2、棱錐的性
10、質(zhì)(1). 截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比已知:如圖(略),在棱錐S-AC中,SH是高,截面ABCDE平行于底面,并與SH交于H。證明:(略)引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。(2).正棱錐的定義及基本性質(zhì):正棱錐的定義:底面是正多邊形頂點(diǎn)在底面的射影是底面的中心各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;棱錐的高、側(cè)棱和
11、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形引申:正棱錐的側(cè)棱與底面所成的角都相等;正棱錐的側(cè)面與底面所成的二面角相等;(3)正棱錐的各元素間的關(guān)系下面我們結(jié)合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來(lái)研究。引申:觀察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點(diǎn)?(可證得SOM =SOB =SMB =OMB =900,所以側(cè)面全是直角三角形。)若分別假設(shè)正棱錐的高SO= h,斜高SM= h,底面邊長(zhǎng)的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角SMO= ,側(cè)棱與底面組成
12、的角 SBO= , BOM=1800/n (n為底面正多邊形的邊數(shù))請(qǐng)?jiān)囃ㄟ^(guò)三角形得出以上各元素間的關(guān)系式。(課后思考題)例題分析例1.若一個(gè)正棱錐每一個(gè)側(cè)面的頂角都是600,則這個(gè)棱錐一定不是( )A三棱錐 B四棱錐 C五棱錐 D六棱錐(答案:D)例2如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過(guò)SO的中點(diǎn)且平行于底面的截面ABC的面積。v解析及圖略w例3已知正四棱錐的棱長(zhǎng)和底面邊長(zhǎng)均為a,求:(1)側(cè)面與底面所成角的余弦(2)相鄰兩個(gè)側(cè)面所成角的余弦v解析及圖略w課堂練習(xí)1、 知一個(gè)正六棱錐的高為h,側(cè)棱為L(zhǎng),求它的底面邊長(zhǎng)和斜高。v解析及圖略w2、 錐被平行與底面的平面所截
13、,若截面面積與底面面積之比為12,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。v解析及圖略w課堂小結(jié)一:棱錐的基本概念及表示、分類二:棱錐的性質(zhì)截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。2.正棱錐的定義及基本性質(zhì)正棱錐的定義:底面是正多邊形頂點(diǎn)在底面的射影是底面的中心(1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;(2)棱錐的高、斜高和
14、斜高在底面內(nèi)的射影組成一個(gè)直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形引申: 正棱錐的側(cè)棱與底面所成的角都相等;正棱錐的側(cè)面與底面所成的二面角相等;正棱錐中各元素間的關(guān)系課后作業(yè)1:課本P52 習(xí)題9.8 : 2、 42:課時(shí)訓(xùn)練:訓(xùn)練一棱錐概念和性質(zhì)說(shuō)課稿3教材分析教材的地位和作用棱錐這節(jié)教材是立體幾何的第2.2節(jié)它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識(shí),掌握若干基本圖形以及棱柱的概念和性質(zhì)的基礎(chǔ)上進(jìn)一步研究多面體的又一常見幾何體。它既是線面關(guān)系的具體化,又為以后進(jìn)一步學(xué)習(xí)棱臺(tái)的概念和性質(zhì)奠定了基礎(chǔ)。 因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時(shí),這
15、節(jié)課也是進(jìn)一步培養(yǎng)高一學(xué)生的空間想象能力和邏輯思維能力的重要內(nèi)容。教學(xué)內(nèi)容本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運(yùn)用正棱錐的性質(zhì)解決有關(guān)計(jì)算和證明問(wèn)題。通過(guò)觀察具體幾何體模型引出棱錐的概念;通過(guò)棱柱與棱錐類比引入正棱錐的概念;通過(guò)對(duì)具體問(wèn)題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問(wèn)題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會(huì)感到自然,好接受。對(duì)教材的內(nèi)容則有所增減,處理方式也有適當(dāng)改變。教學(xué)目的根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點(diǎn)和高一學(xué)生對(duì)空間圖形的認(rèn)知特點(diǎn),我把本節(jié)課的教學(xué)目的確定為:通過(guò)棱錐,正棱錐概念的.教學(xué),培養(yǎng)學(xué)生知識(shí)遷移的能力及數(shù)學(xué)表達(dá)能力;領(lǐng)會(huì)應(yīng)用正棱錐的性質(zhì)解
16、題的一般方法,初步學(xué)會(huì)應(yīng)用性質(zhì)解決相關(guān)問(wèn)題;通過(guò)對(duì)正棱錐中相關(guān)元素的相互轉(zhuǎn)化的研究,提高學(xué)生的空間想象能力以及空間問(wèn)題向平面轉(zhuǎn)化的能力;進(jìn)行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。教學(xué)重點(diǎn),難點(diǎn),關(guān)鍵對(duì)于高一學(xué)生來(lái)說(shuō),空間觀念正逐步形成。而實(shí)際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點(diǎn)是通過(guò)對(duì)具體問(wèn)題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實(shí)質(zhì);而如何將空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題來(lái)解決?本節(jié)課則通過(guò)抓住正棱錐中的基本圖形這一難點(diǎn)實(shí)現(xiàn)突破,教學(xué)的關(guān)鍵是正確認(rèn)識(shí)正棱錐的線線,線面垂直關(guān)系。教法分析類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型
17、、學(xué)會(huì)應(yīng)用、發(fā)展?jié)撃?、形成能力、提高素質(zhì)。由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進(jìn)一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時(shí)機(jī),因此,在教學(xué)中,一方面通過(guò)電教手段,把某些概念,性質(zhì)或知識(shí)關(guān)鍵點(diǎn)制成了投影片,既節(jié)省時(shí)間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學(xué)中并沒有采取把正棱錐性質(zhì)同時(shí)全部講授給學(xué)生的做法,而是通過(guò)具體問(wèn)題的分析與處理,將正棱錐最重要的性質(zhì)這一知識(shí)點(diǎn)發(fā)現(xiàn)的全過(guò)程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會(huì)知識(shí)發(fā)生、發(fā)展的過(guò)程及其規(guī)律,從而提高學(xué)生分析和解決實(shí)際問(wèn)題的能力。學(xué)法指導(dǎo)教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)
18、學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點(diǎn),這節(jié)課主要是教給學(xué)生動(dòng)手做,動(dòng)腦想;嚴(yán)格證,多訓(xùn)練,勤鉆研。的研討式學(xué)習(xí)方法。這樣做,增加了學(xué)生主動(dòng)參與的機(jī)會(huì),增強(qiáng)了參與意識(shí),教給學(xué)生獲取知識(shí)的途徑;思考問(wèn)題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生學(xué)有新思,思有所得,練有所獲。學(xué)生才會(huì)逐步感到數(shù)學(xué)美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)創(chuàng)新型人才的需要。教學(xué)流程課題引入上一節(jié)課我們學(xué)習(xí)了棱柱的有關(guān)知識(shí),當(dāng)棱柱的上底面縮為一點(diǎn)時(shí),想一想,其底面,側(cè)棱有何變化?(可將金字塔,帳篷的圖片以及不同棱錐的模型依次出示給學(xué)生)將現(xiàn)實(shí)生活的實(shí)例抽象成數(shù)學(xué)模型,獲得新的幾何體DD棱錐。
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 22765:2025 EN Nuclear fuel technology - Sintered (U,Pu)O2 pellets - Guidance for ceramographic preparation for microstructure examination
- 紋身配樂課程設(shè)計(jì)
- 自動(dòng)裝料系統(tǒng)plc課程設(shè)計(jì)
- 藝術(shù)課體驗(yàn)課課程設(shè)計(jì)
- 大地測(cè)量GPS課程設(shè)計(jì)
- 《刮痧西學(xué)中》課件
- 九年級(jí)歷史下冊(cè)期末綜合檢測(cè)課件
- 制造企業(yè)員工手冊(cè)
- 數(shù)據(jù)化課程設(shè)計(jì)
- 流水燈課程設(shè)計(jì)概述
- 基于老舊小區(qū)加裝電梯特殊安全及風(fēng)險(xiǎn)控制的研究
- 甘肅省蘭州市(2024年-2025年小學(xué)三年級(jí)語(yǔ)文)人教版綜合練習(xí)(上學(xué)期)試卷(含答案)
- 2024年人教版小學(xué)四年級(jí)信息技術(shù)(上冊(cè))期末試卷及答案
- 中建醫(yī)療工程交付指南
- 譯林版小學(xué)英語(yǔ)二年級(jí)上全冊(cè)教案
- DL∕T 821-2017 金屬熔化焊對(duì)接接頭射線檢測(cè)技術(shù)和質(zhì)量分級(jí)
- DL∕ T 1195-2012 火電廠高壓變頻器運(yùn)行與維護(hù)規(guī)范
- 小學(xué)五年級(jí)英語(yǔ)語(yǔ)法練習(xí)
- NB-T32004-2018光伏并網(wǎng)逆變器技術(shù)規(guī)范
- 領(lǐng)導(dǎo)與班子廉潔談話記錄(4篇)
- 衡陽(yáng)市耒陽(yáng)市2022-2023學(xué)年七年級(jí)上學(xué)期期末語(yǔ)文試題【帶答案】
評(píng)論
0/150
提交評(píng)論