版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、高中函數(shù)值域和定義域的大小,是高中數(shù)學??嫉囊粋€知識點,本文介紹了函數(shù)求值域最常用的九種方法和例題講解.一觀察法通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域。例1求函數(shù)y=3+(23x)的值域。點撥:根據(jù)算術平方根的性質(zhì),先求出(23x)的值域。解:由算術平方根的性質(zhì),知(23x)0,故3+(23x)3。函數(shù)的知域為.點評:算術平方根具有雙重非負性,即:(1)被開方數(shù)的非負性,(2)值的非負性。本題通過直接觀察算術平方根的性質(zhì)而獲解,這種方法對于一類函數(shù)的值域的求法,簡捷明了,不失為一種巧法。練習:求函數(shù)y=x(0x5)的值域。(答案:值域為:0,1,2,3,4,5)二反函數(shù)
2、法當函數(shù)的反函數(shù)存在時,則其反函數(shù)的定義域就是原函數(shù)的值域。例2求函數(shù)y=(x+1)/(x+2)的值域。點撥:先求出原函數(shù)的反函數(shù),再求出其定義域。解:顯然函數(shù)y=(x+1)/(x+2)的反函數(shù)為:x=(12y)/(y1),其定義域為y1的實數(shù),故函數(shù)y的值域為yy1,yR。點評:利用反函數(shù)法求原函數(shù)的定義域的前提條件是原函數(shù)存在反函數(shù)。這種方法體現(xiàn)逆向思維的思想,是數(shù)學解題的重要方法之一。練習:求函數(shù)y=(10x+10-x)/(10x10-x)的值域。(答案:函數(shù)的值域為yy<1或y>1)三配方法當所給函數(shù)是二次函數(shù)或可化為二次函數(shù)的復合函數(shù)時,可以利用配方法求函數(shù)值域例3:求函
3、數(shù)y=(x2+x+2)的值域。點撥:將被開方數(shù)配方成完全平方數(shù),利用二次函數(shù)的最值求。解:由x2+x+20,可知函數(shù)的定義域為x1,2。此時x2+x+2=(x1/2)29/40,9/40x2+x+23/2,函數(shù)的值域是0,3/2點評:求函數(shù)的值域不但要重視對應關系的應用,而且要特別注意定義域?qū)χ涤虻闹萍s作用。配方法是數(shù)學的一種重要的思想方法。練習:求函數(shù)y=2x5154x的值域.(答案:值域為yy3)四判別式法若可化為關于某變量的二次方程的分式函數(shù)或無理函數(shù),可用判別式法求函數(shù)的值域。例4求函數(shù)y=(2x22x+3)/(x2x+1)的值域。點撥:將原函數(shù)轉(zhuǎn)化為自變量的二次方程,應用二次方程根的
4、判別式,從而確定出原函數(shù)的值域。解:將上式化為(y2)x2(y2)x+(y-3)=0()當y2時,由=(y2)24(y2)x+(y3)0,解得:2x10/3當y=2時,方程()無解。函數(shù)的值域為2y10/3。點評:把函數(shù)關系化為二次方程F(x,y)=0,由于方程有實數(shù)解,故其判別式為非負數(shù),可求得函數(shù)的值域。常適應于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±(cx2+dx+e)的函數(shù)。練習:求函數(shù)y=1/(2x23x+1)的值域。(答案:值域為y8或y>0)。五最值法對于閉區(qū)間a,b上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間a,b內(nèi)的極值,并與邊
5、界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域。例5已知(2x2-x-3)/(3x2+x+1)0,且滿足x+y=1,求函數(shù)z=xy+3x的值域。點撥:根據(jù)已知條件求出自變量x的取值范圍,將目標函數(shù)消元、配方,可求出函數(shù)的值域。解:3x2+x+10,上述分式不等式與不等式2x2-x-30同解,解之得1x3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1x3/2),z=-(x-2)2+4且x-1,3/2,函數(shù)z在區(qū)間-1,3/2上連續(xù),故只需比較邊界的大小。當x=-1時,z=5;當x=3/2時,z=15/4。函數(shù)z的值域為z5z15/4。點評:本題是
6、將函數(shù)的值域問題轉(zhuǎn)化為函數(shù)的最值。對開區(qū)間,若存在最值,也可通過求出最值而獲得函數(shù)的值域。練習:若x為實數(shù),則函數(shù)y=x2+3x-5的值域為()A(,)B7,C0,)D5,)(答案:D)。六圖象法通過觀察函數(shù)的圖象,運用數(shù)形結(jié)合的方法得到函數(shù)的值域。例6求函數(shù)y=x+1+(x-2)2的值域。點撥:根據(jù)絕對值的意義,去掉符號后轉(zhuǎn)化為分段函數(shù),作出其圖象。解:原函數(shù)化為2x+1(x1)y=3(-1<x2)2x-1(x>2)它的圖象如圖所示。顯然函數(shù)值y3,所以,函數(shù)值域3,。點評:分段函數(shù)應注意函數(shù)的端點。利用函數(shù)的圖象求函數(shù)的值域,體現(xiàn)數(shù)形結(jié)合的思想。是解決問題的重要方法。求函數(shù)值域
7、的方法較多,還適應通過不等式法、函數(shù)的單調(diào)性、換元法等方法求函數(shù)的值域七單調(diào)法利用函數(shù)在給定的區(qū)間上的單調(diào)遞增或單調(diào)遞減求值域。例1求函數(shù)y=4x1-3x(x1/3)的值域。點撥:由已知的函數(shù)是復合函數(shù),即g(x)=1-3x,y=f(x)+g(x),其定義域為x1/3,在此區(qū)間內(nèi)分別討論函數(shù)的增減性,從而確定函數(shù)的值域。解:設f(x)=4x,g(x)=1-3x,(x1/3),易知它們在定義域內(nèi)為增函數(shù),從而y=f(x)+g(x)=4x1-3x在定義域為x1/3上也為增函數(shù),而且yf(1/3)+g(1/3)=4/3,因此,所求的函數(shù)值域為y|y4/3。點評:利用單調(diào)性求函數(shù)的值域,是在函數(shù)給定的
8、區(qū)間上,或求出函數(shù)隱含的區(qū)間,結(jié)合函數(shù)的增減性,求出其函數(shù)在區(qū)間端點的函數(shù)值,進而可確定函數(shù)的值域。練習:求函數(shù)y=3+4-x的值域。(答案:y|y3)八換元法以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進而求出值域。例2求函數(shù)y=x-3+2x+1的值域。點撥:通過換元將原函數(shù)轉(zhuǎn)化為某個變量的二次函數(shù),利用二次函數(shù)的最值,確定原函數(shù)的值域。解:設t=2x+1(t0),則x=1/2(t2-1)。于是y=1/2(t2-1)-3+t=1/2(t+1)2-41/2-4=-7/2.所以,原函數(shù)的值域為y|y7/2。點評:將無理函數(shù)或二次型的函數(shù)轉(zhuǎn)化為二次函數(shù),通過求出二次函數(shù)的
9、最值,從而確定出原函數(shù)的值域。這種解題的方法體現(xiàn)換元、化歸的思想方法。它的應用十分廣泛。練習:求函數(shù)y=x-1x的值域。(答案:y|y3/4九構(gòu)造法根據(jù)函數(shù)的結(jié)構(gòu)特征,賦予幾何圖形,數(shù)形結(jié)合。例3求函數(shù)y=x2+4x+5+x2-4x+8的值域。點撥:將原函數(shù)變形,構(gòu)造平面圖形,由幾何知識,確定出函數(shù)的值域。解:原函數(shù)變形為f(x)=(x+2)2+1+(2-x)2+22作一個長為4、寬為3的矩形ABCD,再切割成12個單位正方形。設HK=x,則ek=2-x,KF=2+x,AK=(2-x)2+22,KC=(x+2)2+1。由三角形三邊關系知,AK+KCAC=5。當A、K、C三點共線時取等號。原函數(shù)
10、的知域為y|y5。點評:對于形如函數(shù)y=x2+a±(c-x)2+b(a,b,c均為正數(shù)),均可通過構(gòu)造幾何圖形,由幾何的性質(zhì),直觀明了、方便簡捷。這是數(shù)形結(jié)合思想的體現(xiàn)。練習:求函數(shù)y=x2+9+(5-x)2+4的值域。(答案:y|y52)以上九種是函數(shù)求值域最常用的方法,下面介紹三種特殊情況下求值域的幾種方法.十比例法對于一類含條件的函數(shù)的值域的求法,可將條件轉(zhuǎn)化為比例式,代入目標函數(shù),進而求出原函數(shù)的值域。例4已知x,yR,且3x-4y-5=0,求函數(shù)z=x2+y2的值域。點撥:將條件方程3x-4y-5=0轉(zhuǎn)化為比例式,設置參數(shù),代入原函數(shù)。解:由3x-4y-5=0變形得,(x3
11、)/4=(y-1)/3=k(k為參數(shù))x=3+4k,y=1+3k,z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。當k=3/5時,x=3/5,y=4/5時,zmin=1函數(shù)的值域為z|z1.點評:本題是多元函數(shù)關系,一般含有約束條件,將條件轉(zhuǎn)化為比例式,通過設參數(shù),可將原函數(shù)轉(zhuǎn)化為單函數(shù)的形式,這種解題方法體現(xiàn)諸多思想方法,具有一定的創(chuàng)新意識。練習:已知x,yR,且滿足4x-y=0,求函數(shù)f(x,y)=2x2-y的值域。(答案:f(x,y)|f(x,y)1)十一利用多項式的除法例5求函數(shù)y=(3x+2)/(x+1)的值域。點撥:將原分式函數(shù),利用長除法轉(zhuǎn)化為一個整式與一個分式之和。解:y=(3x+2)/(x+1)=31/(x+1)。1/(x+1)0,故y3。函數(shù)y的值域為y3的一切實數(shù)。點評:對于形如y=(ax+b)/(cx+d)的形式的函數(shù)均可利用這種方法。練習:求函數(shù)y=(x2-1)/(x-1)(x1)的值域。(答案:y2)十二不等式法例6求函數(shù)Y=3x/(3x+1)的值域
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 重點中學德育工作計劃
- 2025年下學期小學一年級班主任工作計劃
- 體育鍛煉小計劃
- 采購人員年終總結(jié)及計劃范文
- 2025初二工作計劃范文
- 英語六級復習計劃不求高分只求通過
- 《歌唱基本常識》課件
- 《電工電子技術基礎》課件-第1章
- 《大眾汽車社會責任》課件
- 通道門安全協(xié)議書范本
- DB37∕T 5016-2021 民用建筑外窗工程技術標準
- 操作系統(tǒng)填空題
- 《阿利的紅斗篷》閱讀題及答案
- [QC]提高隧道防水板一次安裝合格率
- 產(chǎn)科重點??茀R報課件
- 燈檢檢漏一體機安裝、運行和性能確認方案
- 金屬風管支架重量計算表
- 義務教育《勞動》課程標準(2022年版)
- 高標準基本農(nóng)田土地整治項目工程施工費預算表
- 300KW并網(wǎng)電站方案
- 高速公路施工安全布控圖
評論
0/150
提交評論