




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第2章隨機變量及其分布習題解答一.選擇題1,假設定義分布函數(shù)F(x尸PX<x,那么函數(shù)F(x)是某一隨機變量X的分布函數(shù)的充要條件是(D).A. 0<F(x)<1.B. 0EF(x)W1,且FD=0,F(F=1.C. F(x)單調不減,且F(*)=0,F(y)=1.D. F(x)單調不減,函數(shù)F(x)右連續(xù),且F(,)=0,F(")=1.2.0一1函數(shù)Fx=一1x-2-2<x<0是(x_0A).A.某一離散型隨機變量X的分布函數(shù).B.某一連續(xù)型隨機變量X的分布函數(shù).C.既不是連續(xù)型也不是離散型隨機變量的分布函數(shù).D.不可能為某一隨機變量的分布函數(shù).0x:
2、二03.函數(shù)F(x)=<sinx0Wx<n(D).1x_二A.是某一離散型隨機變量的分布函數(shù).B.是某一連續(xù)型隨機變量的分布函數(shù).C.既不是連續(xù)型也不是離散型隨機變量的分布函數(shù).D.不可能為某一隨機變量的分布函數(shù).4.設X的分布函數(shù)為F(x),Y的分布函數(shù)為F2(x),而F(x)=aF(x)bFz(x)是某隨機變量Z的分布函數(shù),那么a,b可取(A).3A.a=5A.0.6.B.0.35.C.0.25.D.0.6.設連續(xù)型變量X的概率密度為p(x),分布函數(shù)為F(x),那么對于任意X值有(A).A. P(X=0)=0.B. F(x)=p(x).C.P(X=x)=p(x).D.P(X=
3、x)=F(x).7.任一個連續(xù)型的隨機變量X的概率密度為p(x),那么p(x)必滿足(C).A.0<p(x)<1.B.單調不減.C.-bepxdx=1D.joOlimp(x)=1.xr二c8.為使p(x)=4Jix20x:1成為某個隨機變量X的概率密度,那么c應滿足(B).-becdx=1一二1-x2B.1cdx=1、.1-x2C.1cdx=1.0J-x2D.-bocdx=1.4d-x2x9.設隨機變量X的概率密度為A.2.B. 1.p(x)=Ae2,那么A=(D).1C. 1.210.設1X的概率留度函數(shù)為p(x)=e2F(x)pX<x,那么x<0時,F(x)=()A
4、.1-ex.2B.1e二2D. -ex.2x211.設p(x)=x五一e2cc0x>0是隨機變量X的概率密度,那么常數(shù)c(Bx三0)5.設X的分布律為X012P0.250.350.4而F(x)=PXEx,那么F(T2)=(A).A.可以是任意非零常數(shù).B.只能是任意正常數(shù).C.僅取1.D.僅取1.一,、口,1一一,12.設連續(xù)型隨機變量X的分布函數(shù)為F(x),那么Y=1X分布函數(shù)為(D).2A.F(2-2y).13.設隨機變量X1yB.-F(1.C.2F(2-2y).D.1-F(2-2y).11一yApl-2.2B. 1-py-1C. -p-I.,2D. 2p(1-2y).14.設隨機變
5、量X的密度函數(shù)p(x)是連續(xù)的偶函數(shù)(即p(x)=p(x),而F(x)是X的分布函數(shù),那么對任意實數(shù)2有()aB. F(-a)=1-f0p(x)dx.1aC. F(-a)=2-0p(x)dx.D. F(-a)=F(a).二.填空題1x-e315 .欲使f(x)r八1NxA-e3為某隨機變量的分布函數(shù),那么要求A=1x_0016 .假設隨機變量X的分布函數(shù)F(x)=Ax21x:00Mx<6,那么必有A=1/36x-617 .從裝有4件合格品及1件次品的口袋中連取兩次,每次取一件,取出后不放回,求取出次品數(shù)X的分布律為PX=0=3/5,PX=1=2/518.獨立重復地擲一枚均勻硬幣,直到出現(xiàn)
6、正面為止,設X表示首次出現(xiàn)正面的試驗1k411k次數(shù),那么X的分布列PX=k=px=k=1II222k=1,2,L19.設某離散型隨機變量X的分布列是PX=k*,k=1,2,10,那么C=5520.設離散型隨機變量X的分布函數(shù)是F(x)=PXMx,用F(x)表示概率P':X=Xo:'=F(Xo)-F(Xo-0)的概率密度為p(x),Y=12X,那么Y的分布密度為(A).21.設X是連續(xù)型隨機變量,那么PX=3=0隨機變量X的0,八一PS,一、,分布函數(shù)為F(xA(x-1,x:222)<2x<,3那么P(2.5X乂)F(4JF(2.5)0.723隨機變量X的分布函數(shù)2
7、F(x)=2d.1/1-e2PX<1=1-eJ24 .設連續(xù)型隨機變量X的分布函數(shù)為02F(x)£x:00<x<72,那么x的概率密度p(x)=0_x_.2(其它)r25 .設隨機變量X的分布密度為p(x)=Ax(1-x)2,x0,(0,1)(,),那么常數(shù)A=_12.x-(0,1)26假設X的概率密度為P(x),那么Y=3X+1的概率密度Py(y)=1P入3P.327.設電子管使用壽命的密度函數(shù)100px=x20x100(單位:小時),那么在150x-100小時內獨立使用的三只管子中恰有一個損壞的概率為4/928.設隨機變量X的分布律為三.應用計算題X01234P
8、0.10.20.30.30.1求(1)P1<XW4;(2)X的分布函數(shù)F(x).解:(1)P1<XE4=PX=2+PX=3+PX=4=0.3+0.3+0.1=0.70,x<00.1,0<x<1(2)X的分布函數(shù)F(x)為F(x)=?031C0.6,2<x<30.9,3<x<41,x>429.設連續(xù)隨機變量X的概率密度工Cx,一1£x:二0,p(x)=C-x,0三x三10,|x|1試求:(1)常數(shù)c;(2)概率P|X區(qū)0.5;(3)X的分布函數(shù)F(x).二01解:(1)由1=(p(x)dx=(c+x)dx+(c-x)dx=2c
9、-1,得c=1.1-000.5(2) P|X|<0.5=P-0.5<X<0.5=5(1x)dxo(1-x)dx=0.75(3) X的分布函數(shù)為F(x)0,x<-1x(1t)dt,-1<x:010xJJ1+t)dt+J0(1t)dt,1,x-10,x<-112-(1+x)2,-1<x<0=<2CJ/1c0Mx<11-(1-x)2,0<x<121,x至130.設顧客到某銀行窗口等待效勞的時間X(單位:分鐘)的概率密度函數(shù)為1Ie5,x0p(x)=50,x<0某顧客在窗口等待,如超過10分鐘,他就離開,求他離開的概率15口
10、O解:他離開的概率為PX,0=J-e5dx=e10531.隨機變量X的分布函數(shù)為F(x)=1x26,一x,241,x:00Mx<2,求其分布密度p(x).x-21X-e2一-、1解:pxi;=Fx=-0X:二00<x:2x.2X10123P0.33aa0.10.232.設X是離散型隨機變量,其分布律為(1)求常數(shù)a;(2)Y=2X+3的分布律.解:1由0.3+3a+a+0.1+0.2=1得a=0.1X10123Y13579P0.30.30.10.10.2(2)由于Y13579P0.30.30.10.10.2所以,Y=2X+3的分布律為ee.x>0一33.設隨機變量X的密度函數(shù)為pX(x)=,九>0,求丫=eX的密度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 益陽醫(yī)學高等專科學?!度瞬潘刭|測評與選拔》2023-2024學年第二學期期末試卷
- 做賬實操-機械制造公司的賬務處理分錄
- 鄭州經貿學院《網路原理與技術》2023-2024學年第二學期期末試卷
- 陜西服裝工程學院《專業(yè)課程綜合2(酒店)》2023-2024學年第二學期期末試卷
- 貴陽人文科技學院《環(huán)境與食品安全》2023-2024學年第二學期期末試卷
- 2025山西省建筑安全員-C證考試題庫
- 廣西財經學院《老年社會工作》2023-2024學年第二學期期末試卷
- 大連理工大學城市學院《地理空間數(shù)據庫》2023-2024學年第二學期期末試卷
- 常德職業(yè)技術學院《藥劑學A》2023-2024學年第二學期期末試卷
- 山西金融職業(yè)學院《公共危機治理》2023-2024學年第二學期期末試卷
- 2024年萍鄉(xiāng)衛(wèi)生職業(yè)學院單招職業(yè)技能測試題庫標準卷
- 2025年重慶三峰環(huán)境集團招聘筆試參考題庫含答案解析
- 育嬰培訓課件
- 《管理品牌資產》戴維·阿克著
- 藥品網絡交易服務三方平臺質量管理體系文件-B2B平臺(完整版)
- 粵教粵科版三年級下冊科學全冊課時練(同步練習)
- 電網數(shù)字化項目工作量度量規(guī)范應用指南(2020版)
- 小學開學第一課禁毒安全
- 2025年砌筑工職業(yè)技能(中級)知識考試題庫及答案
- 開題報告:適應人口發(fā)展趨勢的區(qū)域教育結構優(yōu)化與政策調整研究
- 【MOOC】跨文化交際-蘇州大學 中國大學慕課MOOC答案
評論
0/150
提交評論