




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上選修2-3定理概念及公式總結(jié)第一章基數(shù)原理1.分類(lèi)計(jì)數(shù)原理:做一件事情,完成它可以有n類(lèi)辦法,在第一類(lèi)辦法中有種不同的方法,在第二類(lèi)辦法中有種不同的方法,在第n類(lèi)辦法中有種不同的方法那么完成這件事共有 N=m1+m2+mn 種不同的方法2.分步計(jì)數(shù)原理:做一件事情,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,做第n步有mn種不同的方法,那么完成這件事有N=m1×m2×mn 種不同的方法分類(lèi)要做到“不重不漏”,分步要做到“步驟完整”3.兩個(gè)計(jì)數(shù)原理的區(qū)別:如果完成一件事,有n類(lèi)辦法,不論哪一類(lèi)辦法中的哪一種方法,都
2、能獨(dú)立完成這件事,用分類(lèi)計(jì)數(shù)原理,如果完成一件事需要分成幾個(gè)步驟,各步驟都不可缺少,需要完成所有步驟才能完成這件事,是分步問(wèn)題,用分步計(jì)數(shù)原理4.排列:從n個(gè)不同的元素中取出m個(gè)(mn)元素并按一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.(1)排列數(shù): 從n個(gè)不同的元素中取出m個(gè)(mn)元素的所有排列的個(gè)數(shù).用符號(hào)表示(2)排列數(shù)公式: 用于計(jì)算,或 用于證明。=n(n-1)! 規(guī)定0!=15.組合:一般地,從個(gè)不同元素中取出個(gè)元素并成一組,叫做從個(gè)不同元素中取出個(gè)元素的一個(gè)組合(1)組合數(shù): 從個(gè)不同元素中取出個(gè)元素的所有組合的個(gè)數(shù),用表示(2)組合數(shù)公式: 用于計(jì)算,或
3、 用于證明。(3)組合數(shù)的性質(zhì): 規(guī)定:; + . 6.二項(xiàng)式定理及其特例:(1)二項(xiàng)式定理展開(kāi)式共有n+1項(xiàng),其中各項(xiàng)的系數(shù)叫做二項(xiàng)式系數(shù)。(2)特例:.7.二項(xiàng)展開(kāi)式的通項(xiàng)公式: (為展開(kāi)式的第r+1項(xiàng))8二項(xiàng)式系數(shù)的性質(zhì):(1)對(duì)稱(chēng)性:在展開(kāi)式中,與首末兩端 “等距”的兩個(gè)二項(xiàng)式系數(shù)相等,即,直線是圖象的對(duì)稱(chēng)軸(2)增減性與最大值:當(dāng)時(shí),二項(xiàng)式系數(shù)逐漸增大,由對(duì)稱(chēng)性知它的后半部分是逐漸減小的,且在中間取得最大值。當(dāng)是偶數(shù)時(shí),在中間一項(xiàng)的二項(xiàng)式系數(shù)取得最大值;當(dāng)是奇數(shù)時(shí),在中間兩項(xiàng),的二項(xiàng)式系數(shù),取得最大值9.各二項(xiàng)式系數(shù)和:(1) ,(2)10.各項(xiàng)系數(shù)之和:(采用賦值法)例:求的各項(xiàng)系
4、數(shù)之和解:令,則有,故各項(xiàng)系數(shù)和為-1第二章 概率知識(shí)點(diǎn):1、隨機(jī)變量:如果隨機(jī)試驗(yàn)可能出現(xiàn)的結(jié)果可以用一個(gè)變量X來(lái)表示,并且X是隨著試驗(yàn)的結(jié)果的不同而變化,那么這樣的變量叫做隨機(jī)變量 隨機(jī)變量常用大寫(xiě)字母X、Y等或希臘字母、等表示。2、離散型隨機(jī)變量:在上面的射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X所有可能的值能一一列舉出來(lái),這樣的隨機(jī)變量叫做離散型隨機(jī)變量3、離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,. ,xi ,.,xn X取每一個(gè)值 xi的概率p1,p2,. , p i ,., p n,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列4、分布列性質(zhì) pi0
5、, i =1,2, n; p1 + p2 +pn= 15、二點(diǎn)分布:如果隨機(jī)變量X的分布列為:其中0<p<1,q=1-p,則稱(chēng)離散型隨機(jī)變量X服從參數(shù)p的二點(diǎn)分布6、超幾何分布:一般地, 設(shè)總數(shù)為N件的兩類(lèi)物品,其中一類(lèi)有M件,從所有物品中任取n(nN)件,這n件中所含這類(lèi)物品件數(shù)X是一個(gè)離散型隨機(jī)變量,則它取值為m時(shí)的概率為, 7、 條件概率:對(duì)任意事件A和事件B,在已知事件A發(fā)生的條件下事件B發(fā)生的概率,叫做條件概率.記作P(B|A),讀作A發(fā)生的條件下B的概率8、 公式: 9、 相互獨(dú)立事件:事件A(或B)是否發(fā)生對(duì)事件B(或A)發(fā)生的概率沒(méi)有影響,這樣的兩個(gè)事件叫做相互獨(dú)立
6、事件。10、 n次獨(dú)立重復(fù)試驗(yàn):在相同條件下,重復(fù)地做n次試驗(yàn),各次試驗(yàn)的結(jié)果相互獨(dú)立,一般就稱(chēng)它為n次獨(dú)立重復(fù)試驗(yàn)11、二項(xiàng)分布: 設(shè)在n次獨(dú)立重復(fù)試驗(yàn)中某個(gè)事件A發(fā)生的次數(shù)設(shè)為X如果在一次試驗(yàn)中某事件發(fā)生的概率是p,事件A不發(fā)生的概率為q=1-p,那么在n次獨(dú)立重復(fù)試驗(yàn)中 ,事件A恰好發(fā)生k次的概率是(其中 k=0,1, ,n)于是可得隨機(jī)變量X的分布列如下:這樣的離散型隨機(jī)變量X服從參數(shù)為n,p二項(xiàng)分布,記作XB(n,p) 。12、數(shù)學(xué)期望:一般地,若離散型隨機(jī)變量X的概率分布為則稱(chēng)為離散型隨機(jī)變量X的數(shù)學(xué)期望或均值(簡(jiǎn)稱(chēng)為期望) 13、方差:叫隨機(jī)變量X的方差,簡(jiǎn)稱(chēng)方差。14、集中分布的期望與方差一覽:期望方差兩點(diǎn)分布二項(xiàng)分布,X B(n,p)超幾何分布N,M,n15、正態(tài)分布:若正態(tài)變量概率密度曲線的函數(shù)表達(dá)式為 的圖像,其中解析式中的實(shí)數(shù)是參數(shù),且,分別表示總體的期望與標(biāo)準(zhǔn)差期望為與標(biāo)準(zhǔn)差為的正態(tài)分布通常記作,正態(tài)變量概率密度曲線的函數(shù)的圖象稱(chēng)為正態(tài)曲線。 16、正態(tài)曲線基本性質(zhì):(1)曲線在x軸的上方,并且關(guān)于直線x=對(duì)稱(chēng)(2)曲線在x=時(shí)處于最高點(diǎn),并且由此處向左、右兩邊無(wú)限延伸時(shí),曲線逐漸降低,呈現(xiàn)“中間高,兩邊低”的形狀 (3)曲線的形狀由確定越大,曲線越“矮胖”,表示總體的分布越分散;越小,曲線越“高瘦”,表示總體的分布越集中
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《身上的“尺子”》教學(xué)設(shè)計(jì)-2024-2025學(xué)年二年級(jí)上冊(cè)數(shù)學(xué)北京版
- pta滿足特定條件的4位數(shù)
- 安全生產(chǎn)專(zhuān)業(yè)力量建設(shè)
- 教育學(xué)師生觀
- 2024年6月保險(xiǎn)業(yè)經(jīng)營(yíng)情況匯報(bào)
- 2024困難申請(qǐng)補(bǔ)助申請(qǐng)表
- 全髖關(guān)節(jié)圍手術(shù)期護(hù)理
- 2025公務(wù)員公共基礎(chǔ)法律知識(shí):合同的訂立與解除
- 2025辦公樓租賃合同協(xié)議
- 鐘樓區(qū)外墻巖板施工方案
- 2025年北京電子科技職業(yè)學(xué)院高職單招高職單招英語(yǔ)2016-2024年參考題庫(kù)含答案解析
- 摩斯密碼表教程
- 醫(yī)院9s管理基礎(chǔ)知識(shí)
- 專(zhuān)題七-讀后續(xù)寫(xiě)-02-環(huán)境描寫(xiě)【高分詞塊-精彩好句】(原卷版)
- 2025年臨床醫(yī)師定期考核試題中醫(yī)知識(shí)復(fù)習(xí)題庫(kù)及答案(200題)
- 2024年武漢市新洲區(qū)人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 2025江蘇中煙工業(yè)招聘128人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年審計(jì)署審計(jì)干部培訓(xùn)中心招聘歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- JJF(陜) 111-2024 超聲流量計(jì)在線校準(zhǔn)規(guī)范
- 2024年度城市公共交通線路特許經(jīng)營(yíng)協(xié)議2篇
- 心肺復(fù)蘇術(shù)-cpr課件
評(píng)論
0/150
提交評(píng)論