版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、1 線性規(guī)劃的一些應(yīng)用線性規(guī)劃的一些應(yīng)用1 1 人力資源分配的問題2 2 生產(chǎn)計(jì)劃的問題3 3 套裁下料問題4 4 配料問題5 5 投資問題21 1人力資源分配的問題 例1某晝夜服務(wù)的公交線路每天各時(shí)間段內(nèi)所需司機(jī)和乘務(wù)人員數(shù)如下: 設(shè)司機(jī)和乘務(wù)人員分別在各時(shí)間段一開始時(shí)上班,并連續(xù)工作八小時(shí),問該公交線路怎樣安排司機(jī)和乘務(wù)人員,既能滿足工作需要,又配備最少司機(jī)和乘務(wù)人員?3 解:設(shè) xi 表示第i班次時(shí)開始上班的司機(jī)和乘務(wù)人員數(shù),這樣我們建立如下的數(shù)學(xué)模型。 目標(biāo)函數(shù): Min x1 + x2 + x3 + x4 + x5 + x6 約束條件:s.t. x1 + x6 60 x1 + x2
2、70 x2 + x3 60 x3 + x4 50 x4 + x5 20 x5 + x6 30 x1,x2,x3,x4,x5,x6 04 例2一家中型的百貨商場,它對售貨員的需求經(jīng)過統(tǒng)計(jì)分析如下表所示。為了保證售貨人員充分休息,售貨人員每周工作5天,休息兩天,并要求休息的兩天是連續(xù)的。問應(yīng)該如何安排售貨人員的作息,既滿足工作需要,又使配備的售貨人員的人數(shù)最少?時(shí)間所需售貨員人數(shù)星期日28星期一15星期二24星期三25星期四19星期五31星期六285 解:設(shè) xi ( i = 1,2,7)表示星期一至日開始休息的人數(shù),這樣我們建立如下的數(shù)學(xué)模型。 目標(biāo)函數(shù): Min x1 + x2 + x3 +
3、x4 + x5 + x6 + x7 約束條件:s.t. x1 + x2 + x3 + x4 + x5 28 x2 + x3 + x4 + x5 + x6 15 x3 + x4 + x5 + x6 + x7 24 x4 + x5 + x6 + x7 + x1 25 x5 + x6 + x7 + x1 + x2 19 x6 + x7 + x1 + x2 + x3 31 x7 + x1 + x2 + x3 + x4 28 x1,x2,x3,x4,x5,x6,x7 062 2生產(chǎn)計(jì)劃的問題 例3某公司面臨一個(gè)是外包協(xié)作還是自行生產(chǎn)的問題。該公司生產(chǎn)甲、乙、丙三種產(chǎn)品,都需要經(jīng)過鑄造、機(jī)加工和裝配三個(gè)車
4、間。甲、乙兩種產(chǎn)品的鑄件可以外包協(xié)作,亦可以自行生產(chǎn),但產(chǎn)品丙必須本廠鑄造才能保證質(zhì)量。數(shù)據(jù)如表。問:公司為了獲得最大利潤,甲、乙、丙三種產(chǎn)品各生產(chǎn)多少件?甲、乙兩種產(chǎn)品的鑄造中,由本公司鑄造和由外包協(xié)作各應(yīng)多少件?甲乙丙資 源 限 制鑄 造 工 時(shí) (小 時(shí) /件 )51078000機(jī) 加 工 工 時(shí) (小 時(shí) /件 )64812000裝 配 工 時(shí) (小 時(shí) /件 )32210000自 產(chǎn) 鑄 件 成 本 (元 /件 )354外 協(xié) 鑄 件 成 本 (元 /件 )56-機(jī) 加 工 成 本 (元 /件 )213裝 配 成 本 (元 /件 )322產(chǎn) 品 售 價(jià) (元 /件 )2318167
5、解:設(shè) x1,x2,x3 分別為三道工序都由本公司加工的甲、乙、丙三種產(chǎn)品的件數(shù),x4,x5 分別為由外協(xié)鑄造再由本公司加工和裝配的甲、乙兩種產(chǎn)品的件數(shù)。 求 xi 的利潤:利潤 = 售價(jià) - 各成本之和 產(chǎn)品甲全部自制的利潤 =23-(3+2+3)=15 產(chǎn)品甲鑄造外協(xié),其余自制的利潤 =23-(5+2+3)=13 產(chǎn)品乙全部自制的利潤 =18-(5+1+2)=10 產(chǎn)品乙鑄造外協(xié),其余自制的利潤 =18-(6+1+2)=9 產(chǎn)品丙的利潤 =16-(4+3+2)=7 可得到 xi (i = 1,2,3,4,5) 的利潤分別為 15、10、7、13、9 元。8通過以上分析,可建立如下的數(shù)學(xué)模型
6、:目標(biāo)函數(shù): Max 15x1 + 10 x2 + 7x3 + 13x4 + 9x5 約束條件: 5x1 + 10 x2 + 7x3 8000 6x1 + 4x2 + 8x3 + 6x4 + 4x5 12000 3x1 + 2x2 + 2x3 + 3x4 + 2x5 10000 x1,x2,x3,x4,x5 09例4永久機(jī)械廠生產(chǎn)、三種產(chǎn)品,均要經(jīng)過A、B兩 道工序加工。設(shè)有兩種規(guī)格的設(shè)備A1、A2能完成 A 工序;有三種規(guī)格的設(shè)備B1、B2、B3能完成 B 工序??稍贏、B的任何規(guī)格的設(shè)備上加工; 可在任意規(guī)格的A設(shè)備上加工,但對B工序,只能在B1設(shè)備上加工;只能在A2與B2設(shè)備上加工。數(shù)據(jù)
7、如表。問:為使該廠獲得最大利潤,應(yīng)如何制定產(chǎn)品加工方案?產(chǎn)品單件工時(shí) 設(shè)備 設(shè)備的 有效臺時(shí) 滿負(fù)荷時(shí)的設(shè)備費(fèi)用 A1 5 10 6000 300 A2 7 9 12 10000 321 B1 6 8 4000 250 B2 4 11 7000 783 B3 7 4000 200 原料(元/件) 0.25 0.35 0.50 售價(jià)(元/件) 1.25 2.00 2.80 10解:設(shè) xijk 表示第 i 種產(chǎn)品,在第 j 種工序上的第 k 種設(shè)備上加工的數(shù)量。建立如下的數(shù)學(xué)模型: s.t. 5x111 + 10 x211 6000 ( 設(shè)備 A1 ) 7x112 + 9x212 + 12x31
8、2 10000 ( 設(shè)備 A2 ) 6x121 + 8x221 4000 ( 設(shè)備 B1 ) 4x122 + 11x322 7000 ( 設(shè)備 B2 ) 7x123 4000 ( 設(shè)備 B3 ) x111+ x112- x121- x122- x123 = 0 (產(chǎn)品在A、B工序加工的數(shù)量相等) x211+ x212- x221 = 0 (產(chǎn)品在A、B工序加工的數(shù)量相等) x312 - x322 = 0 (產(chǎn)品在A、B工序加工的數(shù)量相等) xijk 0 , i = 1,2,3; j = 1,2; k = 1,2,311目標(biāo)函數(shù)為計(jì)算利潤最大化,利潤的計(jì)算公式為: 利潤 = (銷售單價(jià) - 原料
9、單價(jià))* 產(chǎn)品件數(shù)之和 -(每臺時(shí)的設(shè)備費(fèi)用*設(shè)備實(shí)際使用的總臺時(shí)數(shù))之和。這樣得到目標(biāo)函數(shù): Max(1.25-0.25)(x111+x112)+(2-0.35)x(2-0.35)x221221+(2.80-0.5)x312 300/6000(5x111+10 x211)-321/10000(7x112+9x212+12x312)- 250/4000(6x121+8x221)-783/7000(4x122+11x322)-200/4000(7x123).經(jīng)整理可得: Max0.75x111+0.7753x112+1.15x211+1.3611x212+1.9148x312-0.375x121
10、-0.5x221-0.4475x122-1.2304x322-0.35x123123 3套裁下料問題 例5某工廠要做100套鋼架,每套用長為2.9 m,2.1 m,1.5 m的圓鋼各一根。已知原料每根長7.4 m,問:應(yīng)如何下料,可使所用原料最??? 解: 共可設(shè)計(jì)下列5 種下料方案,見下表 設(shè) x1,x2,x3,x4,x5 分別為上面 5 種方案下料的原材料根數(shù)。這樣我們建立如下的數(shù)學(xué)模型。 目標(biāo)函數(shù): Min x1 + x2 + x3 + x4 + x5 約束條件: s.t. x1 + 2x2 + x4 100 2x3 + 2x4 + x5 100 3x1 + x2 + 2x3 + 3x5
11、100 x1,x2,x3,x4,x5 013 用“管理運(yùn)籌學(xué)”軟件計(jì)算得出最優(yōu)下料方案:按方案1下料30根;按方案2下料10根;按方案4下料50根。 即 x1=30; x2=10; x3=0; x4=50; x5=0; 只需90根原材料就可制造出100套鋼架。 注意:在建立此類型數(shù)學(xué)模型時(shí),約束條件用大于等于號比用等于號要好。因?yàn)橛袝r(shí)在套用一些下料方案時(shí)可能會(huì)多出一根某種規(guī)格的圓鋼,但它可能是最優(yōu)方案。如果用等于號,這一方案就不是可行解了。144 4配料問題 例6某工廠要用三種原料1、2、3混合調(diào)配出三種不同規(guī)格的產(chǎn)品甲、乙、丙,數(shù)據(jù)如右表。問:該廠應(yīng)如何安排生產(chǎn),使利潤收入為最大?產(chǎn)品名稱規(guī)
12、格要求單價(jià)(元/kg)甲原材料1不少于50%,原材料2不超過25%50乙原材料1不少于25%,原材料2不超過50%35丙不限25原材料名稱每天最多供應(yīng)量單價(jià)(元/kg)11006521002536035 解:設(shè) xij 表示第 i 種(甲、乙、丙)產(chǎn)品中原料 j 的含量。這樣我們建立數(shù)學(xué)模型時(shí),要考慮: 對于甲: x11,x12,x13; 對于乙: x21,x22,x23; 對于丙: x31,x32,x33; 對于原料1: x11,x21,x31; 對于原料2: x12,x22,x32; 對于原料3: x13,x23,x33; 目標(biāo)函數(shù): 利潤最大,利潤 = 收入 - 原料支出 約束條件: 規(guī)
13、格要求 4 個(gè); 供應(yīng)量限制 3 個(gè)。15 利潤=總收入-總成本=甲乙丙三種產(chǎn)品的銷售單價(jià)*產(chǎn)品數(shù)量-甲乙丙使用的原料單價(jià)*原料數(shù)量,故有目標(biāo)函數(shù)Max 50(x11+x12+x13)+35(x21+x22+x23)+25(x31+x32+x33)-65(x11+x21+x31)-25(x12+x22+x32)-35(x13+x23+x33)= -15x11+25x12+15x13-30 x21+10 x22-40 x31-10 x33 約束條件: 從第1個(gè)表中有: x110.5(x11+x12+x13) x120.25(x11+x12+x13) x210.25(x21+x22+x23) x2
14、20.5(x21+x22+x23)16 從第2個(gè)表中,生產(chǎn)甲乙丙的原材料不能超過原材料的供應(yīng)限額,故有 (x11+x21+x31)100 (x12+x22+x32)100 (x13+x23+x33)60 通過整理,得到以下模型:17例6(續(xù))目標(biāo)函數(shù):Max z = -15x11+25x12+15x13-30 x21+10 x22-40 x31-10 x33 約束條件: s.t. 0.5 x11-0.5 x12 -0.5 x13 0 (原材料1不少于50%) -0.25x11+0.75x12 -0.25x13 0 (原材料2不超過25%) 0.75x21-0.25x22 -0.25x23 0
15、(原材料1不少于25%) -0.5 x21+0.5 x22 -0.5 x23 0 (原材料2不超過50%) x11+ x21 + x31 100 (供應(yīng)量限制) x12+ x22 + x32 100 (供應(yīng)量限制) x13+ x23 + x33 60 (供應(yīng)量限制) xij 0 , i = 1,2,3; j = 1,2,3185 5投資問題 例7某部門現(xiàn)有資金200萬元,今后五年內(nèi)考慮給以下的項(xiàng)目投資。已知:項(xiàng)目A:從第一年到第五年每年年初都可投資,當(dāng)年末能收回本利110%;項(xiàng)目B:從第一年到第四年每年年初都可投資,次年末能收回本利125%,但規(guī)定每年最大投資額不能超過30萬元;項(xiàng)目C:需在第
16、三年年初投資,第五年末能收回本利140%,但規(guī)定最大投資額不能超過80萬元;項(xiàng)目D:需在第二年年初投資,第五年末能收回本利155%,但規(guī)定最大投資額不能超過100萬元。 據(jù)測定每萬元每次投資的風(fēng)險(xiǎn)指數(shù)如右表:問:a)應(yīng)如何確定這些項(xiàng)目的每年投資額,使得第五年年末擁有資金的本利金額為最大?b)應(yīng)如何確定這些項(xiàng)目的每年投資額,使得第五年年末擁有資金的本利在330萬元的基礎(chǔ)上使得其投資總的風(fēng)險(xiǎn)系數(shù)為最???項(xiàng)目風(fēng)險(xiǎn)指數(shù)(次/萬元)A1B3C4D5.5 解: 1 1)確定決策變量:連續(xù)投資問題 設(shè) xij ( i = 15,j = 14)表示第 i 年初投資于A(j=1)、B(j=2)、C(j=3)、D
17、(j=4)項(xiàng)目的金額。這樣我們建立如下的決策變量: A x11 x21 x31 x41 x51 B x12 x22 x32 x42 C x33 D x24192 2)約束條件:第一年:A當(dāng)年末可收回投資,故第一年年初應(yīng)把全部資金投出去,于是 x11+ x12 = 200;第二年:B次年末才可收回投資,故第二年年初有資金1.1 x11,于是 x21 + x22+ x24 = 1.1x11;第三年:年初有資金 1.1x21+ 1.25x12,于是 x31 + x32+ x33 = 1.1x21+ 1.25x12;第四年:年初有資金 1.1x31+ 1.25x22,于是 x41 + x42 = 1.
18、1x31+ 1.25x22;第五年:年初有資金 1.1x41+ 1.25x32,于是 x51 = 1.1x41+ 1.25x32; B、C、D的投資限制: xi2 30 ( i =1、2、3、4 ),x33 80,x24 100 3 3)目標(biāo)函數(shù)及模型:a) a) Max z = 1.1x51+ 1.25x42+ 1.4x33 + 1.55x24 s.t. x11+ x12 = 200 x21 + x22+ x24 = 1.1x11; x31 + x32+ x33 = 1.1x21+ 1.25x12; x41 + x42 = 1.1x31+ 1.25x22; x51 = 1.1x41+ 1.2
19、5x32; xi2 30 ( i =1、2、3、4 ),x33 80,x24 100 xij 0 ( i = 1、2、3、4、5;j = 1、2、3、4) 20b)b)所設(shè)變量與問題a相同,目標(biāo)函數(shù)為風(fēng)險(xiǎn)最小,有 Min f =x11+x21+x31+x41+x51+3(x12+x22+x32+x42)+4x33+5.5x24 在問題a的約束條件中加上“第五年末擁有資金本利在330萬元”的條件,于是模型如下:Min f = (x11+x21+x31+x41+x51)+3(x12+x22+x32+x42)+4x33+5.5x24 s.t. x11+ x12 = 200 x21 + x22+ x24 = 1.1x11; x31 + x32+ x33 = 1.1x21+ 1.25x12; x41 + x42 = 1.1x31+ 1.25x22; x51 = 1.1x41+ 1.25x32; xi2 30 ( i =1、2、3、4 ),x33 80,x24 100 1.1x51 + 1.25x42+ 1.4x33+ 1.55x24 330 xij 0 ( i = 1、2、3、4、5;j = 1、2、3、4)21通過以上分析,可建立如下的數(shù)學(xué)模型:目標(biāo)函數(shù): Max 15x1 + 10 x2 + 7x3 + 13x4 + 9x5 約束條件: 5x1 + 10 x2 + 7x3 80
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年行政行為法律文書制作與檔案管理合同3篇
- 二零二五年度物流倉儲代理服務(wù)合同范本4篇
- 2025年度智慧農(nóng)業(yè)項(xiàng)目投資合作協(xié)議范本4篇
- 2025年度商業(yè)房產(chǎn)買賣合同違約金條款及執(zhí)行4篇
- 專業(yè)資產(chǎn)評估服務(wù)協(xié)議模板2024版版B版
- 二零二五版?zhèn)€人年收入證明樣本與合同規(guī)范3篇
- 2025年有機(jī)水果直供社區(qū)團(tuán)購服務(wù)合同3篇
- 二零二五版?zhèn)€人消費(fèi)信貸反擔(dān)保服務(wù)合同3篇
- 2025年社區(qū)宣傳欄升級改造及內(nèi)容更新服務(wù)合同2篇
- 2025年度煤炭交易市場準(zhǔn)入與監(jiān)管協(xié)議4篇
- 安徽省示范高中2024-2025學(xué)年高一(上)期末綜合測試物理試卷(含答案)
- 安徽省合肥市包河區(qū)2023-2024學(xué)年九年級上學(xué)期期末化學(xué)試題
- 《酸堿罐區(qū)設(shè)計(jì)規(guī)范》編制說明
- PMC主管年終總結(jié)報(bào)告
- 售樓部保安管理培訓(xùn)
- 倉儲培訓(xùn)課件模板
- 2025屆高考地理一輪復(fù)習(xí)第七講水循環(huán)與洋流自主練含解析
- GB/T 44914-2024和田玉分級
- 2024年度企業(yè)入駐跨境電商孵化基地合作協(xié)議3篇
- 《形勢與政策》課程標(biāo)準(zhǔn)
- 2023年海南省公務(wù)員錄用考試《行測》真題卷及答案解析
評論
0/150
提交評論