《一元二次方程的解法》復(fù)習(xí)課件_第1頁(yè)
《一元二次方程的解法》復(fù)習(xí)課件_第2頁(yè)
《一元二次方程的解法》復(fù)習(xí)課件_第3頁(yè)
《一元二次方程的解法》復(fù)習(xí)課件_第4頁(yè)
《一元二次方程的解法》復(fù)習(xí)課件_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、數(shù)學(xué)九年級(jí)上:2.2一元二次方程的解法 復(fù)習(xí)課件ppt一元二次方程的解法復(fù)習(xí)一元二次方程的解法復(fù)習(xí)你學(xué)過(guò)一元二次方程的哪些解法你學(xué)過(guò)一元二次方程的哪些解法? ?因式分解法因式分解法開(kāi)平方法開(kāi)平方法配方法配方法公式法公式法你能說(shuō)出每一種解法的特點(diǎn)嗎你能說(shuō)出每一種解法的特點(diǎn)嗎? ?方程的左邊是完全平方式方程的左邊是完全平方式, ,右邊是非右邊是非負(fù)數(shù)負(fù)數(shù); ;即形如即形如x x2 2=a=a(a0)(a0) 1212xa,xaxa,xa1. 1.化化1: 1:把二次項(xiàng)系數(shù)化為把二次項(xiàng)系數(shù)化為1 1; ;2.2.移項(xiàng)移項(xiàng): :把常數(shù)項(xiàng)移到方程的右邊把常數(shù)項(xiàng)移到方程的右邊; ;3.3.配方配方: :方

2、程兩邊同加方程兩邊同加一次項(xiàng)系數(shù)一次項(xiàng)系數(shù) 一半的平方一半的平方; ;4.4.變形變形: :化成化成5.5.開(kāi)平方開(kāi)平方,求解求解( (x xm m ) )a a+ += =2 2“配方法配方法”解方程的基本步驟解方程的基本步驟一除、二移、三配、四化、五解一除、二移、三配、四化、五解. .用用公式法公式法解一元二次方程的解一元二次方程的前提前提是是: :1. 1.必需是一般形式的一元二次方程必需是一般形式的一元二次方程: : ax ax2 2+bx+c=0(a0).+bx+c=0(a0). 2.b2.b2 2-4ac0.-4ac0. .0 04ac4acb b. .2a2a4ac4acb bb

3、 bx x2 22 21.1.用因式分解法的用因式分解法的條件條件是是: :方程左邊能夠方程左邊能夠 分解分解, ,而右邊等于零而右邊等于零; ;2.2.理論理論依據(jù)依據(jù)是是: :如果兩個(gè)因式的積等于零如果兩個(gè)因式的積等于零 那么至少有一個(gè)因式等于零那么至少有一個(gè)因式等于零. .因式分解法解一元二次方程的一般因式分解法解一元二次方程的一般步驟步驟: :一移一移-方程的右邊方程的右邊=0;=0;二分二分-方程的左邊因式分解方程的左邊因式分解; ;三化三化-方程化為兩個(gè)一元一次方程方程化為兩個(gè)一元一次方程; ;四解四解-寫(xiě)出方程兩個(gè)解寫(xiě)出方程兩個(gè)解; ;請(qǐng)用四種方法解下列方程請(qǐng)用四種方法解下列方程

4、: : 4(x 4(x1)1)2 2 = (2x= (2x5)5)2 2先考慮開(kāi)平方法先考慮開(kāi)平方法, ,再用因式分解法再用因式分解法; ;最后才用公式法和配方法最后才用公式法和配方法; ;1.1.關(guān)于關(guān)于y y的一元二次方程的一元二次方程2y(y-3)= 2y(y-3)= -4-4的一般形式是的一般形式是_,_,它它的二次項(xiàng)系數(shù)是的二次項(xiàng)系數(shù)是_,_,一次項(xiàng)是一次項(xiàng)是_,_,常數(shù)項(xiàng)是常數(shù)項(xiàng)是_2y2-6y+4=02-6y43.3.若若x=2x=2是方程是方程x x2 2+ax-8=0+ax-8=0的解,則的解,則a=a=2( ) 21A xy 250B x 238C xx3862DxxB2

5、2、下列方程是一元二次方程的是、下列方程是一元二次方程的是C4.4.下面是某同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中解答下面是某同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中解答的填空題,其中答對(duì)的是(的填空題,其中答對(duì)的是( )A A、若、若x x2 2=4=4,則,則x=2 x=2 B B、若、若3x3x2 2=6x=6x,則,則x=2x=2C C、若、若x x2 2+x-k=0+x-k=0的一個(gè)根是的一個(gè)根是1 1,則,則k=2k=223222D、D、若若的的值值為為零零,則則xxxx3.3.公式法公式法:221.222.530按按要要求求解解下下列列方方程程:因因式式分分解解法法: 3 3配配方方法法: 2 2xx xxx 211

6、2112 2xxyyy總結(jié):方程中有括號(hào)時(shí),應(yīng)總結(jié):方程中有括號(hào)時(shí),應(yīng)先用整體思想先用整體思想考慮有考慮有沒(méi)有簡(jiǎn)單方法,若看不出合適的方法時(shí),則把它沒(méi)有簡(jiǎn)單方法,若看不出合適的方法時(shí),則把它去括號(hào)并整理為一般形式再選取合理的方法。去括號(hào)并整理為一般形式再選取合理的方法。 x x2 2-3x+1=0 -3x+1=0 3x 3x2 2-1=0 -1=0 -3t -3t2 2+t=0 +t=0 x x2 2-4x=2 -4x=2 2x 2x2 2x=0 x=0 5(m+2) 5(m+2)2 2=8=8 3y 3y2 2-y-1=0 -y-1=0 2x 2x2 2+4x-1=0 +4x-1=0 (x-

7、2) (x-2)2 2=2(x-2)=2(x-2) 適合運(yùn)用直接開(kāi)平方法適合運(yùn)用直接開(kāi)平方法 ; 適合運(yùn)用因式分解法適合運(yùn)用因式分解法 ; 適合運(yùn)用公式法適合運(yùn)用公式法 ; 適合運(yùn)用配方法適合運(yùn)用配方法 . . 一般地,當(dāng)一元二次方程一次項(xiàng)系數(shù)一般地,當(dāng)一元二次方程一次項(xiàng)系數(shù)為為0 0時(shí)(時(shí)(axax2 2+c=0+c=0),),應(yīng)選用應(yīng)選用直接開(kāi)平方直接開(kāi)平方法法;若常數(shù)項(xiàng)為;若常數(shù)項(xiàng)為0 0( axax2 2+bx=0+bx=0),應(yīng)),應(yīng)選選用用因式分解法因式分解法;若一次項(xiàng)系數(shù)和常數(shù)項(xiàng);若一次項(xiàng)系數(shù)和常數(shù)項(xiàng)都不為都不為0 (0 (axax2 2+bx+c=0+bx+c=0),),先化為

8、一般式,先化為一般式,看一邊的整式是否容易因式分解,若容看一邊的整式是否容易因式分解,若容易,宜選用因式分解法,不然選用易,宜選用因式分解法,不然選用公式公式法法;不過(guò)當(dāng)二次項(xiàng)系數(shù)是;不過(guò)當(dāng)二次項(xiàng)系數(shù)是1 1,且一次項(xiàng)系,且一次項(xiàng)系數(shù)是偶數(shù)時(shí),用配方法也較簡(jiǎn)單。數(shù)是偶數(shù)時(shí),用配方法也較簡(jiǎn)單。我的發(fā)現(xiàn) 公式法雖然是萬(wàn)能的,對(duì)任何一元二公式法雖然是萬(wàn)能的,對(duì)任何一元二次方程都適用,但不一定是最簡(jiǎn)單的,次方程都適用,但不一定是最簡(jiǎn)單的,因此在解方程時(shí)我們首先考慮能否應(yīng)用因此在解方程時(shí)我們首先考慮能否應(yīng)用“直接開(kāi)平方法直接開(kāi)平方法”、“因式分解法因式分解法”等等簡(jiǎn)單方法,若不行,再考慮公式法(適簡(jiǎn)單方

9、法,若不行,再考慮公式法(適當(dāng)也可考慮配方法)當(dāng)也可考慮配方法)用最好的方法求解下列方程用最好的方法求解下列方程1)1)(3x-23x-2)-49=0 -49=0 2)2)(3x-43x-4)= =(4x-34x-3) 3) 4y=13) 4y=1 y y32選擇適當(dāng)?shù)姆椒ń庀铝蟹匠踢x擇適當(dāng)?shù)姆椒ń庀铝蟹匠? : x x2 22 21 1) )1 1) )( (x x( (x x8 81 1) )( (3 3x x1 1) )( (2 2x x7 78 84 49 97 7) )x x( (2 2x x6 6 2 2x x7 7) )x x( (3 3x x5 59 9x x2 2) )( (

10、x x4 4 4 4x x1 13 3x x3 32 2x x5 5x x2 2 1 1x x2 25 51 16 61 12 22 22 22 22 22 22 2ax2+c=0 =ax2+bx=0 =ax2+bx+c=0 =因式分解法因式分解法公式法(配方法)公式法(配方法)2 2、公式法雖然是萬(wàn)能的,對(duì)任何一元二次方程都適用,、公式法雖然是萬(wàn)能的,對(duì)任何一元二次方程都適用,但不一定但不一定 是最簡(jiǎn)單的,因此在解方程時(shí)我們首先考是最簡(jiǎn)單的,因此在解方程時(shí)我們首先考慮能否應(yīng)用慮能否應(yīng)用“直接開(kāi)平方法直接開(kāi)平方法”、“因式分解法因式分解法”等簡(jiǎn)單等簡(jiǎn)單方法,若不行,再考慮公式法(適當(dāng)也可考慮配方法)方法,若不行,再考慮公式法(適

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論