【課件】1.3.2楊輝三角與二項(xiàng)式系數(shù)的性質(zhì)_第1頁
【課件】1.3.2楊輝三角與二項(xiàng)式系數(shù)的性質(zhì)_第2頁
【課件】1.3.2楊輝三角與二項(xiàng)式系數(shù)的性質(zhì)_第3頁
【課件】1.3.2楊輝三角與二項(xiàng)式系數(shù)的性質(zhì)_第4頁
【課件】1.3.2楊輝三角與二項(xiàng)式系數(shù)的性質(zhì)_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、一般地,對于一般地,對于n N*有有011222()nnnnnnnrnrrnnnnabC aC abC abC abC b 二項(xiàng)定理二項(xiàng)定理:一、新課引入一、新課引入二項(xiàng)展開式中的二項(xiàng)式系數(shù)指的是哪些?共二項(xiàng)展開式中的二項(xiàng)式系數(shù)指的是哪些?共有多少個(gè)?有多少個(gè)? 下面我們來研究二項(xiàng)式系數(shù)有些什么性質(zhì)?我下面我們來研究二項(xiàng)式系數(shù)有些什么性質(zhì)?我們先通過們先通過楊輝三角楊輝三角觀察觀察n為特殊值時(shí),二項(xiàng)式系數(shù)為特殊值時(shí),二項(xiàng)式系數(shù)有什么特點(diǎn)?有什么特點(diǎn)?1“楊輝三角楊輝三角”的來歷及規(guī)的來歷及規(guī)律律 展開式中的二項(xiàng)式系數(shù),如下表所示:展開式中的二項(xiàng)式系數(shù),如下表所示: nba)( 1 1 1 2

2、1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1)(ba2)(ba3)(ba4)(ba5)(ba6)(ba()nab 0111C C012222C C C01233333C C C C0123444444C C C C C012345555555C C C C C C01234566666666C C C C C C C0121.rnnnnnnnnC C CCCC 展開式的二項(xiàng)式展開式的二項(xiàng)式系數(shù)依次是:系數(shù)依次是: nba)( nnnnnC,C,C,C210 從函數(shù)角度看,從函數(shù)角度看, 可看可看成是以成是以r為自變量的函數(shù)為自變量的函

3、數(shù) , ,其定義域是:其定義域是: rnC)(rfn, 2 , 1 , 0 當(dāng)當(dāng) 時(shí),其圖象是右時(shí),其圖象是右圖中的圖中的7個(gè)孤立點(diǎn)個(gè)孤立點(diǎn)6n2二項(xiàng)式系數(shù)的性質(zhì)二項(xiàng)式系數(shù)的性質(zhì) (1)對稱性)對稱性 與首末兩端與首末兩端“等距離等距離”的兩個(gè)二項(xiàng)式系數(shù)相等的兩個(gè)二項(xiàng)式系數(shù)相等 這一性質(zhì)可直接由公式這一性質(zhì)可直接由公式 得到得到mnnmn CC圖象的對稱軸圖象的對稱軸:2nr (2)增減性與最大值)增減性與最大值 kknkkknnnnknkn1C)!1() 1()2)(1(C1由于由于:所以所以 相對于相對于 的增減情況由的增減情況由 決定決定 knC1Cknkkn1(2)增減性與最大值)增減

4、性與最大值 由由:2111nkkkn 二項(xiàng)式系數(shù)是逐漸增大的,由對稱性可二項(xiàng)式系數(shù)是逐漸增大的,由對稱性可知它的后半部分是逐漸減小的,且中間項(xiàng)取知它的后半部分是逐漸減小的,且中間項(xiàng)取得最大值。得最大值。 21nk 可知,當(dāng)可知,當(dāng) 時(shí),時(shí),(2)增減性與最大值)增減性與最大值 因此,因此,當(dāng)當(dāng)n為偶數(shù)時(shí)為偶數(shù)時(shí),中間一項(xiàng)的二項(xiàng)式,中間一項(xiàng)的二項(xiàng)式2Cnn系數(shù)系數(shù) 取得最大值;取得最大值; 當(dāng)當(dāng)n為奇數(shù)時(shí)為奇數(shù)時(shí),中間兩項(xiàng)的二項(xiàng)式系數(shù),中間兩項(xiàng)的二項(xiàng)式系數(shù) 、21Cnn21Cnn相等,且同時(shí)取得最大值。相等,且同時(shí)取得最大值。(3)各二項(xiàng)式系數(shù)的和)各二項(xiàng)式系數(shù)的和 在二項(xiàng)式定理中,令在二項(xiàng)式定

5、理中,令 ,則:,則: 1bannnnnn2CCCC210 這就是說,這就是說, 的展開式的各二項(xiàng)式系的展開式的各二項(xiàng)式系數(shù)的和等于數(shù)的和等于:nba)( n2同時(shí)由于同時(shí)由于 ,上式還可以寫成:,上式還可以寫成:1C0n12CCCC321nnnnnn這是組合總數(shù)公式這是組合總數(shù)公式 一般地,一般地, 展開式的二項(xiàng)式系數(shù)展開式的二項(xiàng)式系數(shù) 有如下性質(zhì):有如下性質(zhì):nba)( (1 1)nnnnCCC,10mnnmnCC (2 2) (3 3)當(dāng))當(dāng) 時(shí),時(shí), (4 4)mnmnmnCCC1121nr1rnrnCC 當(dāng)當(dāng) 時(shí),時(shí),21nrrnrnCC1nnnnnCCC210課堂練習(xí):課堂練習(xí):1

6、)已知)已知 ,那么,那么 = ;2) 的展開式中,二項(xiàng)式系數(shù)的最大值的展開式中,二項(xiàng)式系數(shù)的最大值是是 ;3)若)若 的展開式中的第十項(xiàng)和第十一的展開式中的第十項(xiàng)和第十一項(xiàng)的二項(xiàng)式系數(shù)最大,則項(xiàng)的二項(xiàng)式系數(shù)最大,則n= ;591515,Ca Cb1016C9()ab()nab 二項(xiàng)展開式中的二項(xiàng)式系數(shù)都是一些特二項(xiàng)展開式中的二項(xiàng)式系數(shù)都是一些特殊的組合數(shù),它有三條性質(zhì),要理解和掌握殊的組合數(shù),它有三條性質(zhì),要理解和掌握好,同時(shí)要注意好,同時(shí)要注意“系數(shù)系數(shù)”與與“二項(xiàng)式系數(shù)二項(xiàng)式系數(shù)”的區(qū)別,不能混淆,只有二項(xiàng)式系數(shù)最大的的區(qū)別,不能混淆,只有二項(xiàng)式系數(shù)最大的才是中間項(xiàng),而系數(shù)最大的不一定是中間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論