三角函數(shù)小結(jié)與復(fù)習(xí)_第1頁(yè)
三角函數(shù)小結(jié)與復(fù)習(xí)_第2頁(yè)
三角函數(shù)小結(jié)與復(fù)習(xí)_第3頁(yè)
三角函數(shù)小結(jié)與復(fù)習(xí)_第4頁(yè)
三角函數(shù)小結(jié)與復(fù)習(xí)_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、21:13三角函數(shù)三角函數(shù)小結(jié)與復(fù)習(xí)小結(jié)與復(fù)習(xí)21:13三角函數(shù)三角函數(shù)小結(jié)與復(fù)習(xí)小結(jié)與復(fù)習(xí)一、知識(shí)網(wǎng)絡(luò)二、解題方法三、例題選講四、小結(jié)與作業(yè)宏觀思路微觀直覺(jué)21:13任意角任意角的概念的概念角度制與角度制與弧度制弧度制任意角的任意角的三角函數(shù)三角函數(shù)三角函數(shù)的三角函數(shù)的圖象和性質(zhì)圖象和性質(zhì)已知三角已知三角函數(shù)值求角函數(shù)值求角弧長(zhǎng)與扇形弧長(zhǎng)與扇形面積公式面積公式同角三角函數(shù)同角三角函數(shù)的基本關(guān)系式的基本關(guān)系式誘導(dǎo)誘導(dǎo)公式公式計(jì)算與化簡(jiǎn)、計(jì)算與化簡(jiǎn)、證明恒等式證明恒等式和角公式和角公式差角公式差角公式倍角公式倍角公式應(yīng)用應(yīng)用應(yīng)用應(yīng)用應(yīng)用應(yīng) 用應(yīng)用21:13三角函數(shù)的定義三角函數(shù)的定義sin=ry

2、rxxycos=tan=設(shè)P(x,y)是角終邊上的任意一點(diǎn), = rOPOP(x,y)xy21:13同角三角函數(shù)的基本關(guān)系式同角三角函數(shù)的基本關(guān)系式平方關(guān)系:平方關(guān)系:1cossin22商數(shù)關(guān)系:商數(shù)關(guān)系:tancossin倒數(shù)關(guān)系:倒數(shù)關(guān)系:1cottan21:13誘導(dǎo)公式誘導(dǎo)公式sincostan sin cos tansin cos tan sin cos tan2 sin cos tan2ksin cos tan函數(shù)角21:13和(差)角公式和(差)角公式sincoscossin)sin(sinsincoscos)cos(tantan1tantan)tan(21:13倍角公式倍角公式c

3、ossin22sin2222sin211cos2sincos2cos2tan1tan22tan21:13它們的內(nèi)在聯(lián)系及推導(dǎo)線索如下:它們的內(nèi)在聯(lián)系及推導(dǎo)線索如下:S( )C( )S( )C( )S2 C2T( )T( )T2 21:13正弦、余弦、正切函數(shù)的圖象和性質(zhì)正弦、余弦、正切函數(shù)的圖象和性質(zhì)函 數(shù)正弦函數(shù)正弦函數(shù)余弦函數(shù)余弦函數(shù)正切函數(shù)正切函數(shù)圖 象定義域RR值 域1,1 1,1R周期性最小正周期2最小正周期2最小正周期奇偶性奇函數(shù)偶函數(shù)奇函數(shù)單調(diào)性Zkkxx,221:13三角函數(shù)的應(yīng)用 三角函數(shù)的應(yīng)用主要是運(yùn)用三角公式,進(jìn)行簡(jiǎn)單三角函數(shù)式的化簡(jiǎn)、求值和恒等式的證明(包括引出積化和差

4、、和差化積、半角公式,但不要求記憶)。 在掌握本章的知識(shí)的同時(shí),還應(yīng)注意到本章中大量運(yùn)用的化歸思想,這是一種重要的數(shù)學(xué)思想。我們用過(guò)的化歸包括以下幾個(gè)方面:21:13三角函數(shù)的應(yīng)用 把未知化歸為已知。例如用誘導(dǎo)公式把求任意角的三角函數(shù)值逐步為求銳角三角函數(shù)值。 把特殊化歸為一般。例如把正弦函數(shù)的圖象逐步化歸為函數(shù)y=Asin(x+),xR(其中A0, 0)的簡(jiǎn)圖,把已知三角函數(shù)值求角化歸為求0, 2 上適合條件的角的集合等。 等價(jià)化歸。例如進(jìn)行三角函數(shù)式的化簡(jiǎn)、恒等變形和證明三角恒等式。21:13已知三角函數(shù)值求角已知三角函數(shù)值求角x(僅限于0,2 )的解題步驟: 1、如果函數(shù)值為正數(shù),則求出

5、對(duì)應(yīng)的銳角x0;如果函數(shù)值為負(fù)數(shù),則求出與其絕對(duì)值相對(duì)應(yīng)的銳角x0 ;2、由函數(shù)值的符號(hào)決定角x可能的象限角;3、根據(jù)角x的可能的象限角得出0,2 內(nèi)對(duì)應(yīng)的角:如果x是第二象限角,那么可以表示為 x0如果x是第三象限角,那么可以表示為 x0如果x是第四象限角,那么可以表示為2 x021:13例例1化簡(jiǎn):化簡(jiǎn):313cos313coskk其中kZ)sin3(cos) 1(k答案:答案:21:13例例2已知已知sin() , sin() 3251求求 的值。的值。tantan21:13 例例3已知函數(shù) y = Asin(x+),xR(其中A0, 0)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)(函數(shù)取得最大值的

6、點(diǎn))為M(2, ),與x軸在原點(diǎn)右側(cè)的第一個(gè)交點(diǎn)為N(6,0),求這個(gè)函數(shù)的解析式。2221:13例例4化簡(jiǎn):化簡(jiǎn):2cos2cos21coscossinsin2222 解法1:從“角”入手,“復(fù)角”化為“單角”,利用“升冪公式”。) 1cos2)(1cos2(21coscossinsin222222原式21coscoscoscossinsin22222221cossincossinsin2222221cossin222121:13例例4化簡(jiǎn):化簡(jiǎn):2cos2cos21coscossinsin2222 解法2:從“冪”入手,利用“降冪公式”。2cos2cos21)2cos1)(2cos1 (4

7、1)2cos1)(2cos1 (41原式2cos2cos21)2cos2cos1 (212121:13例例4化簡(jiǎn):化簡(jiǎn):2cos2cos21coscossinsin2222 解法3:從“名”入手,“異名化同名”。2cos2cos21cos)sin1 (sinsin2222原式2cos2cos212cossincos22)2cos21(sin2coscos22)22cos22cos1(2cos)2cos1 (212121:13例例4化簡(jiǎn):化簡(jiǎn):2cos2cos21coscossinsin2222 解法4:從“形”入手,利用“配方法”。2cos2cos21coscossinsin2)coscoss

8、in(sin2原式2cos2cos212sin2sin21)(cos2)22cos(21)(cos22121:13三角解題常規(guī)三角解題常規(guī)宏觀思路宏觀思路分析差異分析差異尋找聯(lián)系尋找聯(lián)系促進(jìn)轉(zhuǎn)化促進(jìn)轉(zhuǎn)化指角的、函數(shù)的、運(yùn)算的差異指角的、函數(shù)的、運(yùn)算的差異利用有關(guān)公式,建立差異間關(guān)系利用有關(guān)公式,建立差異間關(guān)系活用公式,差異轉(zhuǎn)化,矛盾統(tǒng)一活用公式,差異轉(zhuǎn)化,矛盾統(tǒng)一21:13微觀直覺(jué)微觀直覺(jué)1、以變角為主線,注意配湊和轉(zhuǎn)化;、以變角為主線,注意配湊和轉(zhuǎn)化;2、見(jiàn)切割,想化弦;個(gè)別情況弦化切;、見(jiàn)切割,想化弦;個(gè)別情況弦化切;3、見(jiàn)和差,想化積;見(jiàn)乘積,化和差;、見(jiàn)和差,想化積;見(jiàn)乘積,化和差;4、見(jiàn)分式,想通分,使分母最簡(jiǎn);、見(jiàn)分式,想通分,使分母最簡(jiǎn);5、見(jiàn)平方想降冪,見(jiàn)、見(jiàn)平方想降冪,見(jiàn)“1cos”想升冪;想升冪;6、見(jiàn)、見(jiàn)sin2,想拆成,想拆成2sincos;7、見(jiàn)、見(jiàn)sincos或或9、見(jiàn)、見(jiàn)coscoscos,先運(yùn)用,先運(yùn)用sin+sin=pcos+cos=q8、見(jiàn)、見(jiàn)a

評(píng)論

0/150

提交評(píng)論