版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、基本操作-5/(4.8+5.32)2area=pi*2.52x1=1+1/2+1/3+1/4+1/5+1/6exp(acos(0.3)a=1 2 3;4 5 6;7 8 9 a=1:3,4:6,7:9a1=6: -1:1a=eye(4) a1=eye(2,3) b=zeros(2,10) c=ones(2,10) c1=8*ones(3,5)d=zeros(3,2,2);r1=rand(2, 3)r2=5-10*rand(2, 3)r4=2*randn(2,3)+3arr1=1.1 -2.2 3.3 -4.4 5.5arr1(3) arr1(1 4) arr1(1:2:5)arr2=1 2 3
2、; -2 -3 -4;3 4 5arr2(1,:)arr2(:,1:2:3)arr3=1 2 3 4 5 6 7 8arr3(5:end) arr3(end)繪圖x=0:1:10; y=x.2-10*x+15; plot(x,y) x=0:pi/20:2*pi y1=sin(x);y2=cos(x); plot(x,y1,'b-'); hold on; plot(x,y2,k-); legend (sin x,cos x); x=0:pi/20:2*pi; y=sin(x);figure(1) plot(x,y, 'r-') grid on以二元函數(shù)圖 z =
3、xexp(-x2-y2) 為例講解基本操作,首先需要利用meshgrid函數(shù)生成X-Y平面的網(wǎng)格數(shù)據(jù),如下所示:xa = -2:0.2:2;ya = xa;x,y = meshgrid(xa,ya);z = x.*exp(-x.2 - y.2);mesh(x,y,z);建立M文件function fenshu( grade )if grade > 95.0 disp('The grade is A.');else if grade > 86.0 disp('The grade is B.'); else if grade > 76.0 disp
4、('The grade is C.'); else if grade > 66.0 disp('The grade is D.'); else disp('The grade is F.'); end end end end endfunction y=func(x) if abs(x)<1 y=sqrt(1-x2); else y=x2-1; endfunction summ( n)i = 1; sum = 0; while ( i <= n ) sum = sum+i; i = i+1; end str = '
5、88;ÆËã½á¹ûΪ£º',num2str(sum); disp(str) end求極限syms xlimit(1+x)(1/x),x,0,'right')求導數(shù)syms x;f=(sin(x)/x);diff(f)diff(log(sin(x)求積分syms x;int(x2*log(x)syms x;int(abs(x-1),0,2)常微分方程求解dsolve('Dy+2*x*y=x*exp(-x2)','x')計算偏導數(shù)
6、x/(x2 + y2 + z2)(1/2)diff(x2+y2+z2)(1/2),x,2)重積分int(int(x*y,y,2*x,x2+1),x,0,1)級數(shù)syms n;symsum(1/2n,1,inf)Taylor展開式求y=exp(x)在x=0處的5階Taylor展開式taylor(exp(x),0,6)矩陣求逆A=0 -6 -1; 6 2 -16; -5 20 -10det(A)inv(A)特征值、特征向量和特征多項式A=0 -6 -1; 6 2 -16; -5 20 -10; lambda=eig(A)v,d=eig(A)poly(A)多項式的根與計算p=1 0 -2 -5;r=
7、roots(p)p2=poly(r)y1=polyval(p,4)例子:x=-3:3'y=3.03,3.90,4.35,4.50,4.40,4.02,3.26'A=2*x, 2*y, ones(size(x); B=x.2+y.2;c=inv(A'*A)*A'*B;r=sqrt(c(3)+c(1)2+c(2)2)例子ezplot('-2/3*exp(-t)+5/3*exp(2*t)','-2/3*exp(-t)+2/3*exp(2*t)',0,1) grid on; axis(0, 12, 0, 5)密度函數(shù)和概率分布設(shè)x b(2
8、0,0.1),binopdf(2,20,0.1)分布函數(shù)設(shè)x N(1100,502) , y N(1150,802) ,則有normcdf(1000,1100,50)=0.0228,1-0.0228=0.9772 normcdf(1000,1150,80)=0.0304, 1-0.0304=0.9696統(tǒng)計量數(shù)字特征x=29.8 27.6 28.3mean(x)max(x)min(x)std(x) syms p k; Ex=symsum(k*p*(1-p)(k-1),k,1,inf)syms x y; f=x+y; Ex=int(int(x*y*f,y,0,1),0,1)參數(shù)估計例:對某型號的
9、20輛汽車記錄其5L汽油的行駛里程(公里),觀測數(shù)據(jù)如下:29.827.628.327.930.128.729.928.027.928.728.427.229.528.528.030.029.129.829.626.9設(shè)行駛里程服從正態(tài)分布,試用最大似然估計法求總體的均值和方差。x1=29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 28.7;x2=28.4 27.2 29.5 28.5 28.0 30.0 29.1 29.8 29.6 26.9;x=x1 x2'p=mle('norm',x);muhatmle=p(1), sig
10、ma2hatmle=p(2)2m,s,mci,sci=normfit(x,0.5)假設(shè)檢驗例:下面列出的是某工廠隨機選取的20只零部件的裝配時間(分):9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.210.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7設(shè)裝配時間總體服從正態(tài)分布,標準差為0.4,是否認定裝配時間的均值在0.05的水平下不小于10。解 :在正態(tài)總體的方差已知時MATLAB均值檢驗程序:x1=9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2;x2=10.3 9.6
11、9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7;x=x1 x2'm=10;sigma=0.4;a=0.05;h,sig,muci=ztest(x,m,sigma,a,1)得到:h =1, , muci = 10.05287981908398 Inf% PPT 例2 一維正態(tài)密度與二維正態(tài)密度syms x y;s=1; t=2; mu1=0; mu2=0; sigma1=sqrt(s2); sigma2=sqrt(t2); x=-6:0.1:6;f1=1/sqrt(2*pi*sigma1)*exp(-(x-mu1).2/(2*sigma12);f2=1/sqrt
12、(2*pi*sigma2)*exp(-(x-mu2).2/(2*sigma22);plot(x,f1,'r-',x,f2,'k-.') rho=(1+s*t)/(sigma1*sigma2); f=1/(2*pi*sigma1*sigma2*sqrt(1-rho2)*exp(-1/(2*(1-rho2)*(x-mu1)2/sigma12-2*rho*(x-mu1)*(y-mu2)/(sigma1*sigma2)+(y-mu2)2/sigma22);ezsurf(f)% P34 例p1=poisscdf(5,10)p2=poisspdf(0,10)p1,p2%輸出
13、p1 =0.0671p2 =4.5400e-005ans =0.0671 0.0000 % P40 例p3=poisspdf(9,12)% 輸出p3 = 0.0874 % P40 例p4=poisspdf(0,12)% 輸出p4 = 6.1442e-006% P35-37(Th) 解微分方程% 輸入:syms p0 p1 p2 ;S=dsolve('Dp0=-lamda*p0','Dp1=-lamda*p1+lamda*p0','Dp2=-lamda*p2+lamda*p1','p0(0) = 1','p1(0) = 0&
14、#39;,'p2(0) = 0');S.p0,S.p1,S.p2% 輸出:ans =exp(-lamda*t), exp(-lamda*t)*t*lamda, 1/2*exp(-lamda*t)*t2*lamda2% P40 泊松過程仿真% simulate 10 timesclear;m=10; lamda=1; x=; for i=1:ms=exprnd(lamda,'seed',1);% seed是用來控制生成隨機數(shù)的種子, 使得生成隨機數(shù)的個數(shù)是一樣的.x=x,exprnd(lamda);t1=cumsum(x);endx',t1' %輸
15、出:ans = 0.6509 0.6509 2.4061 3.0570 0.1002 3.1572 0.1229 3.2800 0.8233 4.1033 0.2463 4.3496 1.9074 6.2570 0.4783 6.7353 1.3447 8.0800 0.8082 8.8882%輸入:N=;for t=0:0.1:(t1(m)+1)if t<t1(1) N=N,0;elseif t<t1(2) N=N,1;elseif t<t1(3) N=N,2;elseif t<t1(4) N=N,3;elseif t<t1(5) N=N,4;elseif t&
16、lt;t1(6) N=N,5;elseif t<t1(7) N=N,6;elseif t<t1(8) N=N,7;elseif t<t1(9) N=N,8; elseif t<t1(10) N=N,9;else N=N,10;endendplot(0:0.1:(t1(m)+1),N,'r-') %輸出:% simulate 100 timesclear;m=100; lamda=1; x=; for i=1:ms= rand('seed');x=x,exprnd(lamda);t1=cumsum(x);endx',t1'
17、N=;for t=0:0.1:(t1(m)+1)if t<t1(1) N=N,0;endfor i=1:(m-1) if t>=t1(i) & t<t1(i+1) N=N,i; endendif t>t1(m) N=N,m;endendplot(0:0.1:(t1(m)+1),N,'r-') % 輸出:% P48 非齊次泊松過程仿真% simulate 10 timesclear;m=10; lamda=1; x=; for i=1:ms=rand('seed'); % exprnd(lamda,'seed',1)
18、; set seedsx=x,exprnd(lamda);t1=cumsum(x);endx',t1' N=; T=;for t=0:0.1:(t1(m)+1)T=T,t.3; % time is adjusted, cumulative intensity function is t3. if t<t1(1) N=N,0;endfor i=1:(m-1) if t>=t1(i) & t<t1(i+1) N=N,i; endend if t>t1(m) N=N,m; endendplot(T,N,'r-') % outputans
19、 = 0.4220 0.4220 3.3323 3.7543 0.1635 3.9178 0.0683 3.9861 0.3875 4.3736 0.2774 4.6510 0.2969 4.9479 0.9359 5.8838 0.4224 6.3062 1.7650 8.0712 10 times simulation 100 times simulation% P50 復(fù)合泊松過程仿真% simulate 100 timesclear;niter=100; % iterate numberlamda=1; % arriving ratet=input('Input a time:
20、','s')for i=1:niter rand('state',sum(clock); x=exprnd(lamda); % interval time t1=x; while t1<t x=x,exprnd(lamda); t1=sum(x); % arriving time end t1=cumsum(x); y=trnd(4,1,length(t1); % rand(1,length(t1); gamrnd(1,1/2,1,length(t1); frnd(2,10,1,length(t1); t2=cumsum(y);endx',
21、t1',y',t2' X=; m=length(t1);for t=0:0.1:(t1(m)+1) if t<t1(1) X=X,0; end for i=1:(m-1) if t>=t1(i) & t<t1(i+1) X=X,t2(i); end end if t>t1(m) X=X,t2(m); endendplot(0:0.1:(t1(m)+1),X,'r-') 跳躍度服從0,1均勻分布情形 跳躍度服從分布情形跳躍度服從t(10)分布情形 % Simulate the probability that sales r
22、evenue falls in some interval. (e.g. example 3.3.6 in teaching material)clear; niter=1.0E4; % number of iterationslamda=6; % arriving rate (unit:minute)t=720; % 12 hours=720 minutesabove=repmat(0,1,niter); % set up storage for i=1:niter rand('state',sum(clock); x=exprnd(lamda); % interval ti
23、me n=1; while x<t x=x+exprnd(1/lamda); % arriving time if x>=t n=n;else n=n+1; end end z=binornd(200,0.5,1,n); % generate n sales y=sum(z); above(i)=sum(y>432000); end pro=mean(above)Output: pro =0.3192% Simulate the loss pro. For a Compound Poisson processclear; niter=1.0E3; % number of it
24、erationslamda=1; % arriving ratet=input('Input a time:','s') below=repmat(0,1,niter); % set up storage for i=1:niter rand('state',sum(clock); x=exprnd(lamda); % interval time n=1; while x<t x=x+exprnd(lamda); % arriving time if x>=t n=n;else n=n+1; end end r=normrnd(0.0
25、5/253,0.23/sqrt(253),1,n); % generate n random jumps y=log(1.0E6)+cumsum(r); minX=min(y); % minmum return over next n jumps below(i)=sum(minX<log(950000); end pro=mean(below)Output: t=50, pro=0.45% P75 (Example ) 馬氏鏈chushivec0=0 0 1 0 0 0 P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,
26、1,0,0,0,;0,0,1/2,0,0,1/2;0,0,0,0,1,0jueduivec1=chushivec0*Pjueduivec2=chushivec0*(P2)% 計算 1 到 n 步后的分布chushivec0=0 0 1 0 0 0;P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0,0,0,0,1,0;n=10t=1/6*ones(1 6);jueduivec=repmat(t,n 1); for k=1:n jueduiveck=chushivec0*(Pk)
27、; jueduivec(k,1:6)=jueduiveckend% 比較相鄰的兩行n=70;jueduivecn=chushivec0*(Pn)n=71;jueduivecn=chushivec0*(Pn)% Replace the first distribution, Comparing two neighbour absolute-vectors once morechushivec0=1/6 1/6 1/6 1/6 1/6 1/6;P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0
28、,1/2;0,0,0,0,1,0;n=70;jueduivecn=chushivec0*(Pn)n=71;jueduivecn=chushivec0*(Pn)% 賭博問題模擬(帶吸收壁的隨機游走:結(jié)束1次游走所花的時間及終止狀態(tài))a=5; p=1/2;m=0; while m<100 m=m+1; r=2*binornd(1,p)-1; if r=-1 a=a-1; else a=a+1; end if a=0|a=10 break; endendm a % 賭博問題模擬(帶吸收壁的隨機游走:結(jié)束N次游走所花的平均時間及終止狀態(tài)分布規(guī)律) % p=q=1/2 p=1/2;m1=0; m2
29、=0; N=1000;t1=0;t2=0;for n=1:1:N m=0; a=5; while a>0 & a<10 m=m+1; r=2*binornd(1,p)-1; if r=-1 a=a-1; else a=a+1; endendif a=0 t1=t1+m; m1=m1+1;else t2=t2+m; m2=m2+1;endendfprintf('The average times of arriving 0 and 10 respectively are %d,%d.n',t1/m1,t2/m2);fprintf('The freque
30、ncies of arriving 0 and 10 respectively are %d,%d.n',m1/N, m2/N); % verify: fprintf('The probability of arriving 0 and its approximate respectively are %d,%d.n', 5/10, m1/N); fprintf('The expectation of arriving 0 or 10 and its approximate respectively are %d,%d.n', 5*(10-5)/(2*p
31、), (t1+t2)/N ); % p=qp=1/4;m1=0; m2=0; N=1000;t1=zeros(1,N);t2=zeros(1,N);for n=1:1:N m=0;a=5; while a>0 & a<15 m=m+1; r=2*binornd(1,p)-1; if r=-1 a=a-1; else a=a+1; endendif a=0 t1(1,n)=m; m1=m1+1;else t2(1,n)=m; m2=m2+1;endendfprintf('The average times of arriving 0 and 10 respective
32、ly are %d,%d.n',sum(t1,2)/m1,sum(t2,2)/m2);fprintf('The frequencies of arriving 0 and 10 respectively are %d,%d.n',m1/N, m2/N); % verify: fprintf('The probability of arriving 0 and its approximate respectively are %d,%d.n', (p10*(1-p)5-p5*(1-p)10)/(p5*(p10-(1-p)10), m1/N); fprint
33、f('The expectation of arriving 0 or 10 and its approximate respectively are %d,%d.n',5/(1-2*p)-10/(1-2*p)*(1-(1-p)5/p5)/(1-(1-p)10/p10), (sum(t1,2)+sum(t2,2)/N); %連續(xù)時間馬爾可夫鏈 通過Kolmogorov微分方程求轉(zhuǎn)移概率輸入:clear;syms p00 p01 p10 p11 lamda mu; P=p00,p01;p10,p11;Q=-lamda,lamda;mu,-muP*Q輸出:ans = -p00*la
34、mda+p01*mu, p00*lamda-p01*mu -p10*lamda+p11*mu, p10*lamda-p11*mu輸入:p00,p01,p10,p11=dsolve('Dp00=-p00*lamda+p01*mu','Dp01=p00*lamda-p01*mu','Dp10=-p10*lamda+p11*mu','Dp11=p10*lamda-p11*mu','p00(0)=1,p01(0)=0,p10(0)=0,p11(0)=1')輸出:p00 =mu/(mu+lamda)+exp(-t*mu-t*
35、lamda)*lamda/(mu+lamda)p01 =(lamda*mu/(mu+lamda)-exp(-t*mu-t*lamda)*lamda/(mu+lamda)*mu)/mup10 =mu/(mu+lamda)-exp(-t*mu-t*lamda)*mu/(mu+lamda)p11 =(lamda*mu/(mu+lamda)+exp(-t*mu-t*lamda)*mu2/(mu+lamda)/mu% BPATH1 Brownian path simulation: forend randn('state',100) % set the state of randnT =
36、 1; N = 500; dt = T/N;dW = zeros(1,N); % preallocate arrays .W = zeros(1,N); % for efficiency dW(1) = sqrt(dt)*randn; % first approximation outside the loop .W(1) = dW(1); % since W(0) = 0 is not allowedfor j = 2:N dW(j) = sqrt(dt)*randn; % general increment W(j) = W(j-1) + dW(j); end plot(0:dt:T,0,W,'r-')
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際醫(yī)院kv配電站施工合同
- 社區(qū)活動摩托車租賃協(xié)議
- 2024年商品車跨區(qū)域運輸協(xié)作合同
- 有關(guān)蒙古人的春節(jié)的演講稿5篇范文
- 購買合同模板
- 商務(wù)大廈網(wǎng)線施工合同
- 辦公空間改造合同
- 電話銷售年終總結(jié)及明年計劃2024計劃15篇
- 農(nóng)業(yè)科技創(chuàng)新提案管理
- 電子元件法定代表人聘任合同
- 2024年11月紹興市2025屆高三選考科目診斷性考試(一模) 化學試卷(含答案)
- 青藍工程師傅工作計劃(7篇)
- 2024年福建省漳州市臺商投資區(qū)招聘77人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 2022年公務(wù)員國考《申論》真題(副省級)及參考答案
- 中藥融資方案
- 六年級計算題 分數(shù)混合運算專項練習430題
- 2024年第四季度中國酒店市場景氣調(diào)查報告-浩華
- 2024年二級建造師繼續(xù)教育考核題及答案
- 安徽省鼎尖教育聯(lián)考2024-2025學年高二上學期開學考試物理
- 2021-2022學年統(tǒng)編版道德與法治五年級上冊全冊單元測試題及答案(每單元1套共6套)
- 2024年財務(wù)條線人員考試題庫(含答案)
評論
0/150
提交評論