




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、大規(guī)模傳染病的疫情控制模型分析摘要:大規(guī)模傳染性疾病的突然爆發(fā)與迅速蔓延對人類的生存造成巨大的威脅。2009年始于美洲的H1N1甲型流感又開始了在世界范圍內的大規(guī)模傳播,因此對于H1N1甲型流感疫情的防控和發(fā)展情況進行預測顯得尤為重要。本文利用數學模型來解決這個問題。問題一,根據微分方程的原理,建立一個傳統的傳染病模型,此模型為近似于自然傳播時的S-I-R模型。對模型進行求解,可得到傳染病在自然傳播下的預測函數。結論是:在爆發(fā)初期還未進行有效的防控措施時,確診人數快速增加。問題二,我們是在問題一的基礎上,考慮政府對疫情采取防控措施的情況下,傳染病的傳播和發(fā)展趨勢。對模型的求解結果進行分析和檢驗
2、可得:越早的采取隔離措施、隔離強度越強對疫情的控制越有利,且當時,與中國患病人數增長曲線擬合的較好,因此可知中國政府對疫情控制力度應該是0.7左右。關鍵字:H1N1;甲型流感;微分方程;S-I-R模型引言甲型H1N1流感病毒:甲型H1N1流感病毒是A型流感病毒,攜帶有H1N1甲型豬流感病毒,包含有北美和歐亞豬流感、禽流感和人流感三種流感病毒的核糖核酸(RNA)基因片斷,同時擁有亞洲豬流感和非洲豬流感病毒特征。 易感類:(S類)指雖未得病但與已病者接觸后容易受到感染的一類人。感染類:(I類)指感染上某種病原體的一類人。移出類:(R類)指因患病而被隔離或感染死亡或因痊愈而具有免疫力的一類人,他們這
3、時既非感染者,也非易感染者,實際上已經退出了我們所考慮的傳染病系統。在這里我們用治愈者(R)和死亡者(D)代替。1、問題的提出2002年爆發(fā)的非典疫情給全世界,尤其是中國留下了永遠無法磨滅的記憶。大規(guī)模傳染性疾病的突然爆發(fā)與迅速蔓延對人類的生存造成了巨大的威脅。2009年始于美洲的H1N1甲型流感又開始了在全世界范圍內的大規(guī)模傳播,截至2009年6月11日,世界衛(wèi)生組織宣布全球共報告患者人數共28774人,遍布74個國家和地區(qū)。同日,世界衛(wèi)生組織還召開了緊急專家會議,決定將甲型H1N1流感大流行警戒級別提升至最高的第六級,意味著宣布“甲流”進入全球大流行階段。面對來勢洶洶的疫情,中國政府汲取了
4、2002年非典疫情控制的經驗和教訓。疫情一開始就采取了堅決有效的防控措施,對患者和與患者密切接觸的人員一經發(fā)現,立刻進行隔離,直至排除發(fā)病可能。這些措施對疫情的控制起到了明顯的效果。截至2009年6月14日,中國內地共發(fā)現196例患者,尚無一個死亡病例。而一些美洲國家患者人數上升速度卻較快?,F建立數學模型完成以下問題:(1)搜集疫情爆發(fā)初期中國的H1N1疫情統計數據,建立數學模型并對疫情發(fā)展情況進行預測;(2)建立數學模型來刻畫有效的防控措施對疫情傳播的作用,并結合預報結果分析、比較采取防控措施力度的大小對疫情的影響。2、模型假設(1)H1N1甲型流感可由豬傳染給人,也可在人群間傳播。本模型僅
5、考慮人群間的傳播。(2)認為疫情持續(xù)期間內系統總人數不變,同時不考慮此期間的出生人口和自然死亡人口。(3)H1N1甲型流感的潛伏期為1至7天左右,本模型取7天。(4)將所考查人群分為易感類、感染類、治愈者、死亡者四類。(5)假設已治愈的患者二度感染的概率為0,即患者具有免疫能力,不考慮其再感染。(6)假設所有患者均為“他人輸入型”患者,即不考慮人群個體自身發(fā)病。(7)假設已被隔離的人群之間不會發(fā)生交叉感染。(8)不考慮隱性H1N1甲型流感患者,即只要感染上H1N1甲型流感病毒的患者最終都會表現出癥狀。3、符號說明符號含義現有感病者人數易感者人數累計感病者人數治愈人數死亡人數病人的死亡率病人的治
6、愈率未被隔離的病人平均每人每天傳染的人數隔離強度時間常量參數反映的變化快慢4、問題分析對問題一:該問題是對一個繼SARS后又一個比較典型的傳染病模型的研究。由于H1N1的傳播受交通、某地區(qū)的人流量、社會經濟、文化等因素的影響,而影響疫情發(fā)展趨勢的最直接的因素是:感染者的數量、傳播形式以及病毒本身的傳播能力、對感染者的隔離強度、入院時間等,我們在建立模型時不可能也沒有必要考慮所有因素,只需抓住關鍵因素,進行合理的假設并建立模型。首先我們把人群分為四類:易感人群、感病人群、治愈人群和死亡人群,分別用、和表示。然后建立一個傳統的傳染病模型,此模型為近似于自然傳播時的S-I-R模型, 即如下圖所示:易
7、感類(S)感染類(I)移出類(R和D)圖1 疫情傳播示意圖對問題二:隨著感病人群數量的增加,人們的防范意識逐漸增強,促使日傳染率減小。引起人們防范措施增強的原因主要有兩方面:(1) 來自于因對疫情的恐慌心理,而迫使人們加強自身防范意識;(2) 來自衛(wèi)生部門政策、法律法規(guī)的頒布等,而加強了防范措施意識。 以上兩個方面又都受疫情嚴重程度的影響,關系如圖2所示:這些因素都可以使減小,但主要體現在衛(wèi)生部門的隔離強度和采取隔離措施的時間上。即模型二是在模型一的基礎上考慮隔離強度和時間的因素,建立微分方程模型。人們的防范意識疫情嚴重衛(wèi)生部門的防范措施控制力度加強減小疫情減緩圖2 疫情的影響關系圖5、模型建
8、立與求解5.1 問題一5.1.1 模型建立假設產生第一例H1N1甲型流感病人之后的時間內是近似于自由傳播的時段,隔離強度為0,每個病人每天感染人數為一常數。我們考慮自然傳播下的幾類人群的變化情況,并通過分析各類人群的狀態(tài)轉化關系,建立微分方程,得到S-I-R模型?,F有感病人數的變化是由時間段內的新增感病者、死亡人數和痊愈人數決定的:現有感病人數的變化新增感病人數(死亡人數痊愈人數)。 為每個未被隔離的病人每天感染的人數,和分別為治愈率和死亡率。則有新增感病人數為現有感病者在單位時間(天)內的感染人數:新增感病人數=現有感病人數感病者每人在時間內的感染人數= 新增死亡人數=死亡率現有感病人數=新
9、增痊愈人數=痊愈率現有感病人數=于是可得:(1)現有感病人數的變化為: 當時, (2)死亡人數的變化=新增死亡人數,則有: 當時, (3)同理,痊愈人數的變化=新增痊愈人數,則有:當時, (4)累計感病人數=現有感病人數+死亡人數+痊愈人數,則有: 綜上所述,我們可以得到甲型H1N1流感的S-I-R模型,模型一: (1)其中,初始值為 5.1.2模型求解對于現有感病者人數,根據S-I-R模型的方程(1),求得:(2)其中,我們根據以上求出的解,作出了中國的現有感病者人數預測圖,如圖3所示:圖3 中國的現有感病者人數預測圖由圖3分析可知,中國的H1N1確診者人數上升較快,這是因為中國政府在爆發(fā)初
10、期還未進行有效的防控措施,使得確診人數快速增加。5.2 問題二5.2.1模型建立在疫情發(fā)生一段時間后,衛(wèi)生部門會采取有效的防控措施,如強制隔離感染者和密切接觸者等。本模型為采取有效的防控措施之后的傳染病模型,即考慮隔離強度。隔離強度從自然狀態(tài)下的0變?yōu)椤N幢桓綦x的病人平均每人每天感染的人數隨時間逐漸變化,它從初始的最大值逐漸減小至最小值。、的值客觀存在,可從資料中查到。設每個未被隔離的病人每天感染的人數 其中,用來反映的變化快慢,可以查資料估計出它的大?。?0.02)。類似于問題一的分析,我們來考慮在采取隔離措施后的到時段內各類人群的變化情況?,F有感病人數的變化是由時間段內的新增感病者、死亡人
11、數和痊愈人數決定的:現有感病人數的變化新增感病人數(死亡人數痊愈人數)。 為每個未被隔離的病人每天感染的人數,和分別為治愈率和死亡率。則有新增感病人數為現有感病者在單位時間(天)內的感染人數:新增感病人數=現有感病人數感病者每人在時間內的感染人數=新增死亡人數=死亡率現有感病人數=新增痊愈人數=痊愈率現有感病人數=于是可得,(1)現有感病人數的變化為: 當時, (2)死亡人數的變化=新增死亡人數,則有: 當時,(3)同理,痊愈人數的變化=新增痊愈人數,則有: 當時, (4)累計感病人數=現有感病人數+死亡人數+痊愈人數,則有: 綜上所述,可得微分方程模型二 (3)其中, 初始值取模型一的最后一
12、個值。5.2.2模型求解我們求得現有感病人數的方程:(4)其中,經由分析得為常量參數,和為待估計的參數。現在來估計和,現分別取和的估計值為:,0.7,0.8 。至此即為關于的一元確定函數。根據以上求解結果,我們可以作出采取有效措施后的感病者人數預測圖,如圖4所示:圖4 采取不同力度措施后的感病者人數對比圖控制力度不同,患病人數增長的快慢不同,且對患病人數增長速度影響較大??刂屏Χ仍酱?,則其患病人數越少;反之,控制力度越小,則患病人數越多,患病人數增長的越快。從圖中可知當,與中國患病人數增長曲線擬合的較好,因此可知中國政府對疫情控制力度應該是0.7左右。5.2.3 控制力度大小對患病人數增長對比
13、中國控制力度大于美國對疫情的防控力度,因此我們以中國和美國作為防控力度大小不同的兩個國家進行對比。如下圖:由圖5可得:在甲型H1N1流感疫情爆發(fā)初期,美國沒有采取有力的防控措施,加上美國是一個世界大國,人口流動很快,致使疫情迅速蔓延到全球,并且迅速增長。相對于美國而言,中國政府有了非典時期的經驗和教訓,從而在疫情爆發(fā)初期就采取了強有力的防控措施,如隔離確診病人、疑似病人和密切接觸者,盡力將病毒感染率降到最低。這些措施對疫情的控制起到了明顯的效果。圖5 中國和美國患病人數趨勢對比圖結束語(1)為了簡化模型的復雜性,我們設定隔離強度,治愈率、死亡率等參數在一定時間段內不發(fā)生變化,而實際情況下,隨著
14、感染人數的減少是會發(fā)生變化的,還需要針對具體情況做具體分析。(2)模型把人群的每一個個體、每一個地區(qū)視為相同的,忽略了性別、年齡結構以及地區(qū)差異對隔離措施強度、控制時間等參數的影響,而事實上,個體免疫力是與個體年齡因素有關的,同時不同地域對疫情的趨勢也有影響。(3)模型一中對人群的劃分不夠細致,還應該考慮潛伏者和確診者對模型的影響。(4)模型二中沒有考慮人們的防范意識對疫情發(fā)展趨勢的影響。參考文獻1戴明強,李衛(wèi)軍,楊鵬飛.數學模型及其應用M,北京;科學出版社,2007年.2韓中庚,宋明武,邵廣紀.數學建模競賽M,北京;科學出版社,2007年5月.3任超,孫中舉,都琳. SARS傳播控制及經濟影
15、響模型研究J西安;2003年9月.4H1N1專題網,2009年7月26日.5戴朝壽,孫世良.數學建模簡明教程M,北京;高等教育出版社,2007年7月.Propagation model Analysis of H1N1Tian Jia(Department of Mathematics, Xian University of Arts and Science, Xian 710065,China)Abstract: Suddenly, large-scale infectious diseases broken out .Human being were attacked with it. B
16、egan in 2009, the H1N1 influenza in the Americas began in the worldwide large-scale transmission, It is particularly important that the H1N1 influenza outbreak for prevention and controlling and predicting developments. In this paper, mathematical models is used to solve the problem. 1.According to
17、the principle of equations, we can build a traditional disease model and it is similar to the SIR model. The predictive function under the natural spread of infectious diseases is available by solve the model. Conclusion is: not yet take effective control measures, the number diagnosed increase rapidly. 2.We are consider with the spread of infectious diseases and trends under the control measures taken by the Government. T
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 戶外廣告材料絲印染工藝與數字印刷技術的結合考核試卷
- 聚合物生物膜考核試卷
- 體育場館運營中的環(huán)保節(jié)能措施考核試卷
- 保溫容器生產設備故障診斷技術考核試卷
- 園林植物配置中的植物組合藝術考核試卷
- 樂器制作中裝飾細節(jié)誤差對美觀度的影響考核試卷
- 農業(yè)機械租賃業(yè)務售后服務培訓考核試卷
- 2025年中國PTC控制元件數據監(jiān)測報告
- 2025年中國PC硬化噴涂線數據監(jiān)測報告
- 2025年中國HDPE中空壁纏繞管數據監(jiān)測研究報告
- 蝶閥試水方案
- 貴州省黔東南苗族侗族自治州(2024年-2025年小學二年級語文)部編版期末考試試卷(含答案)
- 小米公司4P營銷策略分析與優(yōu)化
- 疑難病例討論課件
- AA-6880原子吸收操作規(guī)程
- NB-T25036-2014發(fā)電廠離相封閉母線技術要求
- MBTI完美版測試題
- 2024年安徽普通高中學業(yè)水平選擇性考試化學試題及答案
- 江蘇省淮安市淮安中學2025屆數學高一下期末教學質量檢測試題含解析2
- 《取水許可核驗報告編制導則(試行)(征求意見稿)》
- 老年消防知識講座
評論
0/150
提交評論