版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、畢業(yè)設(shè)計(jì)(論文外文參考文獻(xiàn)及譯文 中文題目 模塊化安全鐵路信號(hào)計(jì)算機(jī)聯(lián)鎖系統(tǒng)學(xué) 院 自動(dòng)化與電氣工程學(xué)院專 業(yè) 自動(dòng)控制姓 名 葛彥寧學(xué) 號(hào) 200808746指導(dǎo)教師 賀清 2012年 5月 30日Component-based Safety Computer of Railway Signal Interlocking System1 IntroductionSignal Interlocking System is the critical equipment which can guarantee traffic safety and enhance operational effic
2、iency in railway transportation. For a long time, the core control computer adopts in interlocking system is the special customized high-grade safety computer, for example, the SIMIS of Siemens, the EI32 of Nippon Signal, and so on. Along with the rapid development of electronic technology, the cust
3、omized safety computer is facing severe challenges, for instance, the high development costs, poor usability, weak expansibility and slow technology update. To overcome the flaws of the high-grade special customized computer, the U.S. Department of Defense has put forward the concept :we should adop
4、t commercial standards to replace military norms and standards for meeting consumers demand 1. In the meantime, there are several explorations and practices about adopting open system architecture in avionics. The United Stated and Europe have do much research about utilizing cost-effective fault-to
5、lerant computer to replace the dedicated computer in aerospace and other safety-critical fields. In recent years, it is gradually becoming a new trend that the utilization of standardized components in aerospace, industry, transportation and other safety-critical fields.2 Railways signal interlockin
6、g system2.1 Functions of signal interlocking systemThe basic function of signal interlocking system is to protect train safety by controlling signal equipments, such as switch points, signals and track units in a station, and it handles routes via a certain interlocking regulation.Since the birth of
7、 the railway transportation, signal interlocking system has gone through manual signal, mechanical signal, relay-based interlocking, and the modern computer-based Interlocking System.2.2 Architecture of signal interlocking systemGenerally, the Interlocking System has a hierarchical structure. Accord
8、ing to the function of equipments, the system can be divided to the function of equipments; the systemcan be divided into three layers as shown in figure1. Figure 1 Architecture of Signal Interlocking System3 Component-based safety computer design3.1 Design strategyThe design concept of component-ba
9、sed safety critical computer is different from that of special customized computer. Our design strategy of SIC is on a base of fault-tolerance and system integration. We separate the SIC into three layers, the standardized component unit layer, safety software layer and the system layer. Different s
10、afety func tions are allocated for each layer, and the final integration of the three layers ensures the predefined safety integrity level of the whole SIC. The three layers can be described as follows:(1 Component unit layer includes four independent standardized CPU modules. A hardware “ SAFETY AN
11、D” logic is implemented in this year.(2 Safety software layer mainly utilizes fail-safe strategy and fault-tolerant management. The interlocking safety computing of the whole system adopts two outputs from different CPU, it can mostly ensure the diversity of software to hold with design errors of si
12、gnal version and remove hidden risks.(3 System layer aims to improve reliability, availability and maintainability by means of redundancy.3.2 Design of hardware fault-tolerant structureAs shown in figure 2, the SIC of four independent component units (C11, C12, C21, C22. The fault-tolerant architect
13、ure adopts dual 2 vote 2 (2v2×2 structure, and a kind of high-performance standardized module has been selected as computing unit which adopts Intel X Scale kernel, 533 MHZ.The operation of SIC is based on a dual two-layer data buses. The high bus adopts the standard Ethernet and TCP/IP communi
14、cation protocol, and the low bus is Controller Area Network (CAN. C11、 C12 and C21、 C22 respectively make up of two safety computingcomponents IC1 and IC2, which are of 2v2 structure. And each component has an external dynamic circuit watchdog that is set for computing supervision and switching. Fig
15、ure 2 Hardware structure of SIC3.3 Standardized component unitAfter component module is made certain, according to the safety-critical requirements of railway signal interlocking system, we have to do a secondary development on the module. The design includes power supply, interfaces and other embed
16、ded circuits.The fault-tolerant processing, synchronized computing, and fault diagnosis of SIC mostly depend on the safety software. Here the safety software design method is differing from that of the special computer too. For dedicated computer, the software is often specially designed based on th
17、e bare hardware. As restricted by computing ability and application object, a special scheduling program is commonly designed as safety software for the computer, and not a universal operating system. The fault-tolerant processing and fault diagnosis of the dedicated computer are tightly hardware-co
18、upled. However, the safety software for SIC is exoteric and loosely hardware-coupled, and it is based on a standard Linux OS.The safety software is vital element of secondary development. It includes Linux OS adjustment, fail-safe process, fault-tolerance management, and safety interlocking logic. T
19、he hierarchy relations between them are shown in Figure 4.Safety Interlock LogicFail-safe processFault-tolerance managementLinux OS adjustmentFigure 4 Safety software hierarchy of SIC3.4 Fault-tolerant model and safety computation3.4.1 Fault-tolerant modelThe Fault-tolerant computation of SIC is of
20、a multilevel model:SIC=F1002D (F2002(Sc11,S c12,F 2002(Sc21,S c22Firstly, basic computing unit Ci1 adopts one algorithm to complete the S Ci1, and Ci2 finishes the S Ci2via a different algorithm, secondly 2 out of 2 (2oo2 safety computing component of SIC executes 2oo2 calculation and gets FSICi fro
21、m the calculation results of SCi1 S Ci2, and thirdly, according the states of watchdog and switch unit block, the result of SIC is gotten via a 1 out of 2 with diagnostics (1oo2D calculation, which is based on FSIC1 and FSIC2. The flow of calculations is as follows:(1 Sci1=F ci1 (Dnet1,D net2,D di ,
22、D fss (2 Sci2=F ci2 (Dnet1,D net2,D di ,D fss (3 FSICi =F2oo2 (Sci1, Sci2 ,(i=1,2(4 SIC_OutPut=F1oo2D (FSIC1, FSIC23.4.2 Safety computationAs interlocking system consists of a fixed set of task, the computational model of SIC is task-based. In general, applications may conform to a time-triggered, e
23、vent-triggered or mixed computational model. Here the time-triggered mode is selected, tasks are executed cyclically. The consistency of computing states between the two units is the foundation of SIC for ensuring safety and credibility. As SIC works under a loosely coupled mode, it is different fro
24、m that of dedicated hardware-coupled computer. So a specialized synchronization algorithm is necessary for SIC.SIC can be considered as a multiprocessor distributed system, and its computational model is essentially based on data comparing via high bus communication. First, an analytical approach is
25、 used to confirm the worst-case response time of each task. To guarantee the deadline of tasks that communicate across the network, the access time and delay of communication medium is set to a fixed possible value. Moreover, the computational model must meets the real time requirements of railway i
26、nterlocking system, within the system computing cycle, we set many check points P i (i=1,2,. n , which are small enough for synchronization, and computation result voting is executed at each point. The safetycomputation flow of SIC is shown in Figure 5.S t a r t 0clockclockS a f e t y f u n c t i o
27、n sT a s k s o f i n t e r l o c k i n gl o g i ci :p:c h e c k p o i n tI n i t i a l i z e S y n c h r o n i z a t i o nG u a r a n t e e S y n c h r o n o u s T i m e t r i g g e rFigure 5 Safety computational model of SIC4. Hardware safety integrity level evaluation4.1 Safety IntegrityAs an auth
28、oritative international standard for safety-related system, IEC 61508 presents a definition of safety integrity: probability of a safety-related system satisfactorily performing the required safety functions under all the stated conditions within a stated period of time. In IEC 61508, there are four
29、 levels of safety integrity are prescribe, SIL1SIL4. The SIL1 is the lowest, and SIL4 highest.According to IEC 61508, the SIC belongs to safety-related systems in high demand or continuous mode of operation. The SIL of SIC can be evaluated via the probability of dangerous per hour. The provision of
30、SIL about such system in IEC 61508, see table 1.Table 1-Safety Integrity levels: target failure measures for a safety function operating in high demand orcontinuous mode of operationSafety Integrity levelHigh demand or continuous mode of Operation (Probability of a dangerous Failure per hour4 10-9 t
31、o <10-8 3 10-8 to <10-7 2 10-7 to <10-6 1 10-6 to <10-54.2 Reliability block diagram of SICAfter analyzing the structure and working principle of the SIC, we get the bock diagram of reliability, as figure 6. Figure 6 Block diagram of SIC reliability5. ConclusionsIn this paper, we propose
32、d an available standardized component-based computer SIC. Railway signal interlocking is a fail-safe system with a required probability of less than 10-9 safety critical failures per hour. In order to meet the critical constraints, fault-tolerant architecture and safety tactics are used in SIC. Alth
33、ough the computational model and implementation techniques are rather complex, the philosophy of SIC provides a cheerful prospect to safety critical applications, it renders in a simpler style of hardware, furthermore, it can shorten development cycle and reduce cost. SIC has been put into practical
34、 application, and high performance of reliability and safety has been proven.模塊化安全鐵路信號(hào)計(jì)算機(jī)聯(lián)鎖系統(tǒng)1概述信號(hào)聯(lián)鎖系統(tǒng)是保證交通安全、 提高鐵路運(yùn)輸效率的關(guān)鍵設(shè)備。 長(zhǎng)期以來(lái), 在聯(lián)鎖 系統(tǒng)中采用的核心控制計(jì)算機(jī)是特定的高檔安全計(jì)算機(jī), 例如, 西門子的 SIMIS 、 日本 信號(hào)的 EI32等。隨著電子技術(shù)的飛速發(fā)展,定制的安全計(jì)算機(jī)面臨著嚴(yán)重的挑戰(zhàn),例 如:高的開(kāi)發(fā)成本、可用性差、弱可擴(kuò)展性、和緩慢的技術(shù)更新。為了克服高檔特定計(jì) 算機(jī)的缺點(diǎn), 美國(guó)國(guó)防部提出:我們應(yīng)該采用商業(yè)標(biāo)準(zhǔn), 來(lái)取代軍事準(zhǔn)則和滿足客
35、戶需 要的標(biāo)準(zhǔn)。 與此同時(shí), 有許多關(guān)于在電子設(shè)備中采用開(kāi)放式系統(tǒng)結(jié)構(gòu)的探索與實(shí)踐。 美 國(guó)和歐洲已經(jīng)做了很多關(guān)于利用利用劃算的容錯(cuò)計(jì)算機(jī)來(lái)代替專用電腦在航天和其它 安全關(guān)鍵領(lǐng)域。近年來(lái),在航空航天、工業(yè)、交通和其它安全關(guān)鍵領(lǐng)域,利用標(biāo)準(zhǔn)化部 件正逐步成為一種新的趨勢(shì)。2 鐵路信號(hào)聯(lián)鎖系統(tǒng)2.1信號(hào)聯(lián)鎖系統(tǒng)的功能信號(hào)聯(lián)鎖系統(tǒng)的基本功能是通過(guò)控制信號(hào)設(shè)備, 保護(hù)列車運(yùn)行安全。 如控制道岔的 轉(zhuǎn)換、信號(hào)的開(kāi)放和控制列車通過(guò)車站,它通過(guò)一種聯(lián)鎖處理規(guī)則控制線路。自鐵路運(yùn)輸誕生以來(lái)、 信號(hào)聯(lián)鎖系統(tǒng)已經(jīng)經(jīng)歷了手動(dòng)信號(hào)、 機(jī)械信號(hào)、 繼電器聯(lián)鎖 和現(xiàn)代計(jì)算機(jī)聯(lián)鎖系統(tǒng)。2.2信號(hào)聯(lián)鎖系統(tǒng)的構(gòu)架一般來(lái)說(shuō),聯(lián)鎖
36、系統(tǒng)具有層次結(jié)構(gòu)。根據(jù)設(shè)備的功能,系統(tǒng)可分為三層,如圖 2.1所示。 圖 2.1 信號(hào)聯(lián)鎖系統(tǒng)的結(jié)構(gòu)3 安全計(jì)算機(jī)的組件設(shè)計(jì)3.1設(shè)計(jì)策略模塊化安全關(guān)鍵計(jì)算機(jī)組件的設(shè)計(jì)理念不同于那些特殊定制的計(jì)算機(jī)。 我們對(duì)安全 聯(lián)鎖計(jì)算機(jī)的設(shè)計(jì)理念是基于系統(tǒng)的容錯(cuò)性和系統(tǒng)的綜合需求。 將其分為三層:標(biāo)準(zhǔn)化 組成單元層、 軟件安全層與系統(tǒng)層, 并給每一層分配不同的安全功能, 最終將三層集成, 并確保系統(tǒng)達(dá)到預(yù)定的安全完整性水平。三層可以描述如下:(1 標(biāo)準(zhǔn)化組成單元層包括四個(gè)獨(dú)立的標(biāo)準(zhǔn)化 CPU 模塊。這一層實(shí)現(xiàn)硬件 “ 安全 ” 邏輯聯(lián)鎖。(2 軟件安全層主要用故障 -安用策略和容錯(cuò)算法。由于一個(gè)完整的安全
37、聯(lián)鎖系統(tǒng) 采用兩個(gè)不同的 CPU 輸出的結(jié)果,所以最能確保軟件設(shè)計(jì)某一版本,在設(shè)計(jì)時(shí)存在的 多種錯(cuò)誤,清除潛在的風(fēng)險(xiǎn)。(3 系統(tǒng)層,旨在提高系統(tǒng)的可用性和冗余系統(tǒng)的可維護(hù)性。3.2容錯(cuò)結(jié)構(gòu)的硬件設(shè)計(jì)如圖 3.1,安全聯(lián)鎖計(jì)算機(jī)由四個(gè)獨(dú)立單元組成 (C11, C12, C21, C22 。采用雙容 錯(cuò)結(jié)構(gòu)設(shè)計(jì) (2×2取 2 結(jié)構(gòu), 計(jì)算單元選用高可靠性、 高效率的模塊, 采用了英特爾 XScale 內(nèi)核, 533兆赫的處理器。安全聯(lián)鎖計(jì)算機(jī)的操作基于兩層數(shù)據(jù)總線上。 高速總線采用標(biāo)準(zhǔn)以太網(wǎng)結(jié)構(gòu)和 TCP / IP通信協(xié)議、低總線控制器局域網(wǎng) (CAN。 C11、 C12和 C21、
38、C22分別組成兩個(gè)獨(dú)立的安全計(jì)算部件 IC1和 IC2,并構(gòu)成 2乘 2取 2結(jié)構(gòu),并且每一部分都有計(jì)算機(jī)監(jiān)控和 外部開(kāi)關(guān)電路動(dòng)態(tài)監(jiān)測(cè)。 圖 3.1 SIC硬件結(jié)構(gòu)3.3標(biāo)準(zhǔn)化組成單元在研究清楚組成模塊后, 根據(jù)鐵路信號(hào)聯(lián)鎖系統(tǒng)的臨界安全性要求, 我們必須做一 個(gè)二次開(kāi)發(fā)的模塊。該設(shè)計(jì)主要包括電源、接口和其他嵌入式電路。安全聯(lián)鎖計(jì)算機(jī)的容錯(cuò)計(jì)算、 處理、 故障的同步診斷主要依靠安全軟件。 這個(gè)安全 軟件的設(shè)計(jì)方法不同于其他專用的特殊計(jì)算機(jī)。 在專用特殊計(jì)算機(jī)中, 軟件通?;趩?一裸露硬件而特別設(shè)計(jì), 限于計(jì)算處理能力和軟件兼容性, 在電腦上特殊的調(diào)度程序一 般基于安全性軟件設(shè)計(jì), 而不是一個(gè)
39、普通的操作系統(tǒng)。 專用計(jì)算機(jī)中容錯(cuò)處理系統(tǒng)和故 障診斷系統(tǒng)通過(guò)硬件耦合。然而,安全聯(lián)鎖計(jì)算機(jī)中的安全軟件是開(kāi)放、寬松的,它基 于標(biāo)準(zhǔn)的 Linux 操作系統(tǒng)。安全軟件的二次開(kāi)發(fā)是至關(guān)重要的。它包括 Linux 系統(tǒng)調(diào)整,故障 -安全導(dǎo)向、容 錯(cuò)性管理,安全聯(lián)鎖的邏輯。它們之間的層次關(guān)系如圖 3.3。蘭州交通大學(xué)畢業(yè)設(shè)計(jì)(譯文) 圖 3.3 SIC 的安全軟件層次關(guān)系 3.4 容錯(cuò)模型和安全估計(jì)算 3.4.1 容錯(cuò)模型 安全聯(lián)鎖計(jì)算機(jī)的多層容錯(cuò)計(jì)算模型: SIC= F1oo2D (F2oo2(SC11, S C12 , F2oo2 (SC21,SC22 首先,根據(jù)計(jì)算單元 Ci1 采用一個(gè)算法來(lái)
40、完成 Sci1, 計(jì)算單元通過(guò)不同的算法完 Ci2 成 Sci2, 其次, 安全聯(lián)鎖計(jì)算機(jī)實(shí)行二乘二取二算法計(jì)算得到的結(jié)果和 Sci1、 Sci2 計(jì)算, 輸出到 FSICi 中的結(jié)果,再進(jìn)行二乘二取二運(yùn)算,第三,根據(jù)監(jiān)視系統(tǒng)和開(kāi)關(guān)單元塊, 安全聯(lián)鎖計(jì)算機(jī)運(yùn)算的結(jié)果在基于 FSIC1 和 FSIC2 輸出的結(jié)果上, 經(jīng)過(guò)與門的診斷處理 (2 取 1) ,就計(jì)算出 Sci1。同樣的,根據(jù) Ci2 的計(jì)算結(jié)果通過(guò)不同的算法也完成 Sci2。 計(jì)算流程如下: (1 Sci1=F ci1 (D net1,Dnet2,Ddi,Dfss; (2 Sci2=F ci2 (D net1,Dnet2,Ddi,Dfss; (3 FSIC1=F2oo2 (S ci1,Sci2,(i=1,2; (
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人買賣房屋質(zhì)量保證合同4篇
- 2025年浙江物芯數(shù)科技術(shù)有限公司招聘筆試參考題庫(kù)含答案解析
- 二零二五版進(jìn)出口貿(mào)易物流倉(cāng)儲(chǔ)合同2篇
- 2025年江蘇南通天生置業(yè)有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年河南衛(wèi)輝投資集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年浙江嘉興市海寧經(jīng)編園中鑫譽(yù)創(chuàng)業(yè)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 2025年度家庭用車個(gè)人租賃合同模板4篇
- 合肥工業(yè)學(xué)校2025年食堂食品安全教育與宣傳承包合同3篇
- 2025年度新型綠色能源項(xiàng)目融資協(xié)議書(shū)4篇
- 二零二五年度租賃合同范本(含合同解除程序)4篇
- GB/T 12723-2024單位產(chǎn)品能源消耗限額編制通則
- 2024年廣東省深圳市中考英語(yǔ)試題含解析
- GB/T 16288-2024塑料制品的標(biāo)志
- 麻風(fēng)病防治知識(shí)課件
- 建筑工程施工圖設(shè)計(jì)文件審查辦法
- 干部職級(jí)晉升積分制管理辦法
- 培訓(xùn)機(jī)構(gòu)應(yīng)急預(yù)案6篇
- 北師大版數(shù)學(xué)五年級(jí)上冊(cè)口算專項(xiàng)練習(xí)
- 應(yīng)急物資智能調(diào)配系統(tǒng)解決方案
- 2025年公務(wù)員考試時(shí)政專項(xiàng)測(cè)驗(yàn)100題及答案
- TSG ZF003-2011《爆破片裝置安全技術(shù)監(jiān)察規(guī)程》
評(píng)論
0/150
提交評(píng)論