2 直線與圓的位置關(guān)系_第1頁
2 直線與圓的位置關(guān)系_第2頁
2 直線與圓的位置關(guān)系_第3頁
2 直線與圓的位置關(guān)系_第4頁
2 直線與圓的位置關(guān)系_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、課題2.直線與圓的位置關(guān)系授課人教學(xué)目標(biāo)知識技能1.了解直線與圓的三種位置關(guān)系,理解直線與圓相離、相切、相交的概念.2.掌握用數(shù)量關(guān)系判斷直線與圓的位置關(guān)系的方法數(shù)學(xué)思考1.通過活動(dòng)的探究,使學(xué)生體驗(yàn)探究的過程,培養(yǎng)學(xué)生的創(chuàng)新能力;2.通過從運(yùn)動(dòng)的觀點(diǎn)探究直線與圓的三種位置關(guān)系,培養(yǎng)學(xué)生觀察、分析和發(fā)現(xiàn)問題的能力.3.了解轉(zhuǎn)化、分類討論的數(shù)學(xué)思想方法,提高解決實(shí)際問題的能力問題解決通過直線與圓的位置關(guān)系的應(yīng)用,嘗試從數(shù)學(xué)的角度提出問題、理解問題,并能運(yùn)用知識和技能解決問題,提高學(xué)生的應(yīng)用意識情感態(tài)度通過合作探究與觀察分析,體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索與創(chuàng)造,培養(yǎng)學(xué)生合作交流的意識和探索問題的精神,向?qū)W

2、生滲透分類及數(shù)形結(jié)合思想教學(xué)重點(diǎn)探索并掌握直線與圓的三種位置關(guān)系教學(xué)難點(diǎn)能夠運(yùn)用數(shù)量關(guān)系判斷直線與圓的位置關(guān)系授課類型新授課課時(shí)教具多媒體教學(xué)活動(dòng)教學(xué)步驟師生活動(dòng)設(shè)計(jì)意圖回顧(多媒體演示)問題:1.點(diǎn)與圓有幾種位置關(guān)系?怎樣判斷點(diǎn)與圓的位置關(guān)系呢?2.怎樣過直線外一點(diǎn)作已知直線的垂線段?師生活動(dòng):學(xué)生進(jìn)行搶答,教師做好評價(jià)與總結(jié).點(diǎn)與圓的位置關(guān)系的判斷方法有:比較點(diǎn)到圓心的距離d和圓的半徑r之間的數(shù)量關(guān)系等.教師強(qiáng)調(diào)d所表示的意義通過復(fù)習(xí)點(diǎn)與圓的位置關(guān)系,類比發(fā)現(xiàn)直線與圓的位置關(guān)系.(續(xù)表)活動(dòng)一:創(chuàng)設(shè)情境導(dǎo)入新課【課堂引入】圖27246(課件展示)你看過日出嗎?你知道在太陽升起的過程中,太陽

3、和地平線會(huì)有幾種不同的位置關(guān)系嗎?師生活動(dòng):教師利用多媒體演示太陽升起的過程,并指導(dǎo)學(xué)生觀察太陽與地平面的公共點(diǎn)的情況,教師傾聽學(xué)生交流,引導(dǎo)學(xué)生進(jìn)行探究由生活中的實(shí)際問題入手,設(shè)計(jì)情境問題,激發(fā)學(xué)生興趣,導(dǎo)入本課內(nèi)容.活動(dòng)二:實(shí)踐探究交流新知1.探究新知(展示問題)活動(dòng)一:如果把太陽看成一個(gè)圓,把地平線看成一條直線,由此你能得出直線與圓的位置關(guān)系嗎?請同學(xué)們在紙上畫一條直線,把硬幣的邊緣看作圓,在紙上移動(dòng)硬幣,能否發(fā)現(xiàn)直線與圓的位置關(guān)系是怎樣的?直線與圓的公共點(diǎn)個(gè)數(shù)是怎樣變化的?師生活動(dòng):學(xué)生進(jìn)行操作后,小組內(nèi)合作、交流,表述自己的觀點(diǎn),教師進(jìn)行鼓勵(lì)與評價(jià),最后歸納出結(jié)論教師出示直線與圓的三

4、種位置關(guān)系的定義,并引導(dǎo)學(xué)生總結(jié)直線與圓不同位置的公共點(diǎn)的個(gè)數(shù)情況活動(dòng)二:教師提出問題,根據(jù)發(fā)現(xiàn)和認(rèn)識,指導(dǎo)學(xué)生填表:直線與圓的位置關(guān)系公共點(diǎn)的個(gè)數(shù)公共點(diǎn)的名稱直線的名稱補(bǔ)充表格第五項(xiàng),圓心到直線的距離d與圓的半徑r的關(guān)系.師生活動(dòng):學(xué)生通過對直線與圓的位置關(guān)系的概念的理解填空,根據(jù)學(xué)生的回答,教師出示相關(guān)答案.教師利用課間演示直線與圓的位置關(guān)系,并讓學(xué)生觀察直線與圓的距離與圓的半徑的關(guān)系,學(xué)生合作交流,討論出不同位置情況下的d和r的數(shù)量關(guān)系.教師根據(jù)學(xué)生回答,適時(shí)總結(jié)并板書.2.總結(jié)歸納教師引導(dǎo)學(xué)生總結(jié)直線與圓的位置關(guān)系及判斷方法.教師板書:直線與圓的位置關(guān)系:直線與圓相交:交點(diǎn)有2個(gè),dr

5、.判斷直線與圓的位置關(guān)系的方法:利用圓心到直線的距離d和半徑r的大小關(guān)系;利用直線與圓的交點(diǎn)個(gè)數(shù)1.在活動(dòng)中教師為學(xué)生提供參與的時(shí)間和空間,調(diào)動(dòng)敘述的主觀能動(dòng)性,激發(fā)好奇心和求知欲.2.教師在活動(dòng)中引導(dǎo)學(xué)生找出直線與圓的公共點(diǎn)的個(gè)數(shù),讓學(xué)生思考回答,加深對相關(guān)概念的理解.3.通過多媒體演示,使問題形象化,有效地幫助學(xué)生理解直線與圓在不同位置時(shí)的d和r的大小關(guān)系.4.指導(dǎo)學(xué)生在討論過程中體會(huì)類比思想和分類討論思想.(續(xù)表)活動(dòng)三:開放訓(xùn)練體現(xiàn)應(yīng)用【應(yīng)用舉例】例1教材P50例1 如圖27247,在RtABC中,ACB90,AC8,BC6.以點(diǎn)C為圓心,分別以下面給出的r為半徑作圓,試問所作的圓與斜

6、邊AB所在的直線分別有怎樣的位置關(guān)系?請說明理由(1)r4;(2)r4.8;(3)r5. 圖27247變式訓(xùn)練1宜賓中考 已知O的半徑r3,設(shè)圓心O到一條直線的距離為d,圓上到這條直線的距離為2的點(diǎn)的個(gè)數(shù)為m,給出下列命題:若d5,則m0;若d5,則m1;若1d5,則m3;若d1,則m2;若d1,則m4.其中正確命題的個(gè)數(shù)是(C)A1B2C3D42如圖27248,在直角三角形ABC中,ACB90.(1)先作ABC的平分線交AC邊于點(diǎn)O,再以點(diǎn)O為圓心,OC為半徑作O(尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)在(1)的條件下,請你確定AB與所作O的位置關(guān)系,直接寫出你的結(jié)論圖27248解:(1

7、)略(2)直線AB與O相切理由:過點(diǎn)O向AB作垂線OD,垂足為D.BO平分ABC,C90,DOCO,點(diǎn)D在O上,直線AB與O相切師生活動(dòng):學(xué)生自主解答,教師進(jìn)行個(gè)別指導(dǎo),最后讓學(xué)生說明做題理由,教師做好總結(jié)例題將本節(jié)所學(xué)內(nèi)容與以前的知識緊密結(jié)合,使學(xué)生很好地進(jìn)行知識的遷移,在練習(xí)中加深對本節(jié)知識的理解.【拓展提升】例2在ABC中,C90,AC5,AB13,以C為圓心作C.(1)若C與AB相切,求C的半徑;(2)若C與直線AB相交,求CDE的半徑r的取值范圍;(3)若C與線段AB有兩個(gè)交點(diǎn),求CD的半徑r的取值范圍師生活動(dòng):教師引導(dǎo)學(xué)生思考,已知圓心為C的圓與AB的關(guān)系,設(shè)圓心C到AB的距離為d

8、,根據(jù)三角形的面積求出d,然后再運(yùn)用直線與圓的位置關(guān)系確定r的取值范圍.(續(xù)表)活動(dòng)三:開放訓(xùn)練體現(xiàn)應(yīng)用例3如圖27249,APB30,點(diǎn)O是射線PB上的一點(diǎn),OP5 cm,若以點(diǎn)O為圓心,半徑為1.5 cm的O沿BP方向移動(dòng),當(dāng)O與PA相切時(shí),圓心O移動(dòng)的距離為_2或8_ cm. 圖27249 圖27250例4如圖27250,在平面直角坐標(biāo)系xOy中,半徑為2的P的圓心P的坐標(biāo)為(3,0),將P沿x軸正方向平移,使P與y軸相切,則平移的距離為(B)A1B1或5C3D5及時(shí)獲知學(xué)生對所學(xué)知識的掌握情況,落實(shí)本課的學(xué)習(xí)目標(biāo)分層設(shè)計(jì)可讓不同程度的同學(xué)最大限度地發(fā)揮他們的潛力,樹立學(xué)好教學(xué)的信心.活

9、動(dòng)四:課堂總結(jié)反思【達(dá)標(biāo)測評】1若O的半徑是6,點(diǎn)O到直線a的距離為5,則直線a與O的位置關(guān)系為(C)A相離B相切C相交D無法判斷2在平面直角坐標(biāo)系中,以點(diǎn)(3,5)為圓心,r為半徑的圓上有且僅有兩點(diǎn)到x軸所在直線的距離等于1,則圓的半徑r的取值范圍是(D)Ar4B0r6C4r6 D4r63如圖27251,等邊三角形ABC的周長為6,半徑是1的O從與AB相切于點(diǎn)D的位置出發(fā),在ABC外部按順時(shí)針方向沿三角形的邊滾動(dòng),最后又回到與AB相切于點(diǎn)D的位置,則O自轉(zhuǎn)了(C)圖27251A.2周B3周C4周D5周4O的半徑為R,點(diǎn)O到直線l的距離為d,R,d是方程x24xm0的兩根,當(dāng)直線l與O相切時(shí),

10、m的值為_4_5已知RtABC的斜邊AB8 cm,AC4 cm,(1)以點(diǎn)C為圓心作圓,當(dāng)半徑為多少時(shí),AB與C相切?(2)以點(diǎn)C為圓心,分別以2 cm和4 cm為半徑作圓,這兩個(gè)圓與AB分別有怎樣的位置關(guān)系?師生活動(dòng):學(xué)生完成達(dá)標(biāo)測評后,教師進(jìn)行個(gè)別提問,并指導(dǎo)學(xué)生解釋做題理由和做題方法,使學(xué)生在各自思考解答的基礎(chǔ)上,共同交流、形成共識、確定答案設(shè)置達(dá)標(biāo)測評的目的是使學(xué)生加深對所學(xué)知識的理解和運(yùn)用,在問題的選擇上以基礎(chǔ)為主、疑難點(diǎn)突出,增加開放型、探究型問題,使學(xué)生的思維得到拓展、能力得以提升.(續(xù)表)活動(dòng)四:課堂總結(jié)反思【課堂小結(jié)】(1)談一談你在本節(jié)課中有哪些收獲?哪些進(jìn)步?(2)學(xué)習(xí)本

11、節(jié)課后,還存在哪些困惑?教師總結(jié)本課時(shí)主要學(xué)習(xí)內(nèi)容:直線和圓的位置關(guān)系有三種,明確其兩種判定方法布置作業(yè):教材P50練習(xí)第1,2,3題鞏固、梳理所學(xué)知識對學(xué)生進(jìn)行鼓勵(lì)、進(jìn)行思想教育.【知識網(wǎng)絡(luò)】提綱挈領(lǐng),重點(diǎn)突出.【教學(xué)反思】授課流程反思在指導(dǎo)教學(xué)過程中,類比點(diǎn)與圓的位置關(guān)系,探究直線與圓的位置關(guān)系,讓學(xué)生在獨(dú)立思考、合作探究中,發(fā)現(xiàn)問題、解決問題,學(xué)生能夠輕松地得到結(jié)論,獲取知識講授效果反思引導(dǎo)學(xué)生注意以下幾點(diǎn):(1)d所表示的意義;(2)直線與圓相切時(shí)各部分的名稱;(3)直線與圓的位置關(guān)系的判定方法師生互動(dòng)反思從課堂表現(xiàn)來看,學(xué)生能夠自主思考、勇于發(fā)表自己的看法,并善于總結(jié)歸納,在探究過程

12、中,展現(xiàn)出積極、認(rèn)真的學(xué)習(xí)態(tài)度習(xí)題反思好題題號_錯(cuò)題題號_反思教學(xué)過程和教師表現(xiàn),進(jìn)一步提升操作流程和自身素質(zhì).典案二導(dǎo)學(xué)設(shè)計(jì)【學(xué)習(xí)目標(biāo)】1、使學(xué)生掌握直線與圓的位置關(guān)系,能用數(shù)量來判斷直線與圓的位置關(guān)系。2、進(jìn)一步體會(huì)分類討論思想?!緦W(xué)習(xí)重點(diǎn)】用數(shù)量關(guān)系(圓心到直線的距離)判斷直線與圓的位置關(guān)系。【學(xué)習(xí)難點(diǎn)】用數(shù)量關(guān)系(圓心到直線的距離)判斷直線與圓的位置關(guān)系。【課標(biāo)要求】了解切線的概念,探索切線與過切點(diǎn)的半徑之間的關(guān)系,掌握切線的識別方法。【知識回顧】情境導(dǎo)入:用移動(dòng)的觀點(diǎn)認(rèn)識直線與圓的位置關(guān)系1、同學(xué)們也許看過海上日出,如右圖中,如果我們把太陽看作一個(gè)圓,那么太陽在升起的過程中,它和海平

13、面就有右圖中的三種位置關(guān)系。2、請同學(xué)在紙上畫一條直線,把硬幣的邊緣看作圓,在紙上移動(dòng)硬幣,你能發(fā)現(xiàn)直線與圓的公共點(diǎn)個(gè)數(shù)的變化情況嗎?公共點(diǎn)個(gè)數(shù)最少時(shí)有幾個(gè)?最多時(shí)有幾個(gè)?【自主學(xué)習(xí)】從以上的兩個(gè)例子,可以看到,直線與圓的位置關(guān)系只有以下三種,(1)直線與圓的位置關(guān)系的概念:如下圖所示:如圖28.2.6(1)所示,如果一條直線與一個(gè)圓沒有公共點(diǎn),那么就說這條直線與這個(gè)圓_如圖28.2.6(2)所示,如果一條直線與一個(gè)圓只有一個(gè)公共點(diǎn),那么就說這條直線與這個(gè)圓_此時(shí)這條直線叫做圓的_,這個(gè)公共點(diǎn)叫做_如圖28.2.6(3)所示,如果一條直線與一個(gè)圓有兩個(gè)公共點(diǎn),那么就說這條直線與這個(gè)圓_,此時(shí)這

14、條直線叫做圓的_(2)數(shù)量關(guān)系來體現(xiàn)圓與直線的位置關(guān)系:如上圖,設(shè)O的半徑為r,圓心O到直線l的距離為d,從圖中可以看出:若直線l與O_;直線l與O相離_;若直線l與O_;直線l與O相切_;若直線l與O_;直線l與O相交_。所以,若要判斷圓與直線的位置關(guān)系,必須對圓心到直線的距離與圓的半徑進(jìn)行比較大小,由比較的結(jié)果得出結(jié)論。【例題學(xué)習(xí)】例1、已知圓的半徑等于5厘米,圓心到直線的距離是:(1)4厘米;(2)5厘米;(3)6厘米.試判斷出直線和圓分別有幾個(gè)公共點(diǎn)?分別說出直線l與圓的位置關(guān)系。例2、已知圓的半徑等于10厘米,直線和圓只有一個(gè)公共點(diǎn),求圓心到直線的距離.【拓展運(yùn)用】1、 RtABC中

15、,C=90,AC=3,BC=4,CMAB于M,以C為圓心,CM為半徑作C,則點(diǎn)A、B、C、AB的中點(diǎn)E與C的位置關(guān)系分別是什么?【歸納小結(jié)】本節(jié)課我們學(xué)習(xí)了直線與圓的位置關(guān)系,當(dāng)我們判斷直線與圓的位置關(guān)系時(shí),應(yīng)該用數(shù)量關(guān)系(圓心到直線的距離)來體現(xiàn),即上面講解的圓心到直線的距離與圓的半徑進(jìn)行比較大小,從而斷定是哪種關(guān)系?!咎们濉咳绻鸒的直徑為10厘米,圓心O到直線AB的距離為10厘米,那么O與直線AB有怎樣的位置關(guān)系?【作業(yè)】1、直線與O相切,若圓心O到直線的距離是5,則O的半徑是_2、已知O的半徑為3cm,圓心O到直線的距離是4cm,則直線與O的位置關(guān)是_3、已知O的半徑為6,點(diǎn)O到直線的距離為5,則直線與O的位置關(guān)系是( )BCAA相切B相離C相交D不確定4、如圖,在RtABC中,C = 90,B = 30,BC = 4 cm,以點(diǎn)C為圓心,以2 cm的長為半徑作圓,則C與AB的位置關(guān)系是( )A相離B相切C相交D相切或相交5、已知O的直徑為10cm,圓心O到直線的距離分別為3cm,5cm,7cm時(shí),則直線與O的位置關(guān)系分別是( )A相交、相離、相切B相離

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論