場論及電磁波_第1頁
場論及電磁波_第2頁
場論及電磁波_第3頁
場論及電磁波_第4頁
場論及電磁波_第5頁
已閱讀5頁,還剩83頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析第4章 靜態(tài)場分析靜態(tài)場的工程應(yīng)用靜態(tài)場的工程應(yīng)用一、靜態(tài)場特性一、靜態(tài)場特性二、泊松方程和拉普拉斯方程二、泊松方程和拉普拉斯方程三、靜態(tài)場的重要原理和定理三、靜態(tài)場的重要原理和定理四、鏡像法四、鏡像法五、分離變量法五、分離變量法六、復(fù)變函數(shù)法六、復(fù)變函數(shù)法電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析噴墨打印機(jī)工作原理選礦器硫酸鹽礦石英含石英硫酸鹽礦靜態(tài)場的工程應(yīng)用靜態(tài)場的工程應(yīng)用電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析均勻電場中帶電粒子的軌跡陰極射線示波器原理電磁場與電磁波電磁場與電磁波第第4章章

2、 靜態(tài)場分析靜態(tài)場分析磁分離器回旋加速器電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析磁懸浮列車電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析磁錄音原理:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析一、靜態(tài)場特性1. 靜態(tài)場基本概念 靜態(tài)場是指電磁場中的源量和場量都不隨時(shí)間發(fā)生變化的場。 靜態(tài)場包括靜電場、恒定電場及恒定磁場,它們是時(shí)變電磁場的特例。 靜電場是指由靜止的且其電荷量不隨時(shí)間變化的電荷產(chǎn)生的電場。 恒定電場是指導(dǎo)電媒質(zhì)中,由恒定電流產(chǎn)生的電場。 恒定磁場是指由恒定電流或永久磁體產(chǎn)生的磁場,亦稱為靜磁場。 0,0,0VDBttt電磁場與電磁

3、波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析ccddd0ddd0d0lSlVSVSSHlJSElDSVBSJScc000VHJEDBJ靜態(tài)場的麥克斯韋方程組 靜態(tài)場與時(shí)變場的最本質(zhì)區(qū)別:靜態(tài)場中的電場和磁場是彼此獨(dú)立存在的。電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析1. 靜電場的泊松方程和拉普拉斯方程二、泊松方程和拉普拉斯方程 EVDE ()V 2V20靜電場基本方程d0ddlVSVElDSV0VEDDE靜電場是有散(有源)無旋場,是保守場。泊松方程拉普拉斯方程0無源區(qū)域 電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析恒定電場的拉普拉斯方程E c0JE()0

4、 20恒定電場基本方程cd0d0lSElJS00EJcJE導(dǎo)電媒質(zhì)中的恒定電場具有無散、無旋場的特征,是保守場拉普拉斯方程電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析恒定磁場的矢量泊松方程BAcBHJ cAJ2c()AAAJ 0A 洛侖茲規(guī)范 矢量泊松方程 2cAJ cddd0lSSHlJSBSc0HJBBH恒定磁場基本方程 恒定磁場是無散有旋場。電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析20A矢量拉普拉斯方程 mH 0H注意: 標(biāo)量磁位只有在無源區(qū)才能應(yīng)用,而矢量磁位則無此限制。 2m0c0J 222xxyyzzAJAJAJ 2cAJ 分解在沒有電流分布的區(qū)

5、域內(nèi),磁場也成了無旋場,具有位場的性質(zhì),引入標(biāo)量磁位 來表示磁場強(qiáng)度。即mH m標(biāo)量拉普拉斯方程 電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析22222222xyz22222211()rr rrrz22222222111()(sin)sinsinRRRRRRu 拉普拉斯算子直角坐標(biāo)系圓柱坐標(biāo)系球坐標(biāo)系電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析三、靜態(tài)場的重要原理和定理1. 對偶原理1. (1)概念:如果描述兩種物理現(xiàn)象的方程具有相同的數(shù)學(xué)形式,并具有對應(yīng)的邊界條件,那么它們解的數(shù)學(xué)形式也將是相同的,這就是對偶原理,亦稱為二重性原理。具有同樣數(shù)學(xué)形式的兩個(gè)方程稱

6、為對偶方程,在對偶方程中,處于同等地位的量稱為對偶量。靜電場(無源區(qū)域) 恒定電場(電源外區(qū)域) 0E0EE E 0Dc0JDEJE20 20 dSqDScdSIJS(2)靜電場與恒定電場 對偶方程 對偶量電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析(3)靜電場與恒定磁場 對偶方程對偶量(4)有源情況下的對偶關(guān)系對偶關(guān)系存在不像上述兩種情況那樣一目了然(5)應(yīng)用電偶極子和磁偶極子輻射的對偶關(guān)系,某些波導(dǎo)中橫電波(TE波)和橫磁波(TM波)間的對偶關(guān)系 靜電場(無源區(qū)域) 恒定磁場(無源區(qū)域) 0E0H0D0BDEBH202m0dSqDSdmSqBS電磁場與電磁波電磁場與電磁波第

7、第4章章 靜態(tài)場分析靜態(tài)場分析2R1R例1: 已知無限長同軸電纜內(nèi)、外半徑分別為 和 ,如圖所 示,電纜中填充均勻介質(zhì),內(nèi)外導(dǎo)體間的電位差為 ,外導(dǎo)體接地。求其間各點(diǎn)的電位和電場強(qiáng)度。1R2RU解:根據(jù)軸對稱的特點(diǎn)和無限長的假設(shè),可確定電位函數(shù)滿足一維拉普拉斯方程,采用圓柱坐標(biāo)系1()0rrrrlnArB積分由邊界條件1lnUARB20lnARB21122lnlnlnUUABRRRRR 221lnlnRURrR則:E 21lnrUEaRrR電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析解: (1)由于內(nèi)、外導(dǎo)體的電導(dǎo)率很高,可以認(rèn)為電力線仍和導(dǎo)體表面垂直,和靜電場的邊界條件一致,

8、利用對偶原理,可以立即得到2221lnlnRURrR221lnrUEaRrR2121lnlnRURrR121lnrUEaRrR(2)單位長度同軸線漏電流密度為 c221lnrUJEaRrRc212dlnSUIJSRR例2: 如圖所示,在電纜中填充電導(dǎo)媒質(zhì),其他條件同“例1”,求: (1)內(nèi)外導(dǎo)體間的電位及電場強(qiáng)度。(2)單位長度上該同軸線的漏電流。則漏電流為 2R1R電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析2. 疊加定理u若 和 分別滿足拉普拉斯方程,則 和 的線性組合必然滿足拉普拉斯方程。 u 證明: 已知 和 滿足拉普拉斯方程 所以:12ab222212122212()

9、()()ababab 22120 20 利用疊加定理,可以把比較復(fù)雜的場問題分解為較簡單問題的組合,便于求解。121221電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析3. 惟一性定理u 邊值問題的分類 n狄利克雷問題:給定整個(gè)場域邊界上的位函數(shù)值n聶曼問題:給定待求位函數(shù)在邊界上的法向?qū)?shù)值 n混合邊值問題:給定邊界上的位函數(shù)及其法向?qū)?shù)的線性組合 u 惟一性定理:在給定邊界條件下,泊松方程或拉普拉斯方程的解 是惟一的。用反證法可以證明。( )f s( )f sn12( )( )f sfsn惟一性定理為某些復(fù)雜電磁問題求解方法的建立提供了理論根據(jù)。鏡像法就是惟一性定理的直接應(yīng)用

10、。電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析四、鏡像法u鏡像法概念:在一定條件下,可以用一個(gè)或多個(gè)位于待求場域邊界以外虛設(shè)的等效電荷來代替導(dǎo)體表面上感應(yīng)電荷的作用,且保持原有邊界上邊界條件不變,則根據(jù)惟一性定理,空間電場可由原來的電荷和所有等效電荷產(chǎn)生的電場疊加得到。這些等效電荷稱為鏡像電荷,這種求解方法稱為鏡像法。 u理論依據(jù):惟一性定理是鏡像法的理論依據(jù)。電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析u應(yīng)注意的問題:鏡像電荷位于待求場域邊界之外。將有邊界的不均勻空間處理為無限大均勻空間,該均勻空間中媒質(zhì)特性與待求場域中一致。實(shí)際電荷(或電流)和鏡像電荷(或電

11、流)共同作用保持原邊界處的邊界條件不變。 電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析 待求場域:上半空間 邊界: 無限大導(dǎo)體平面 邊界條件:點(diǎn)電荷對無限大接地導(dǎo)體平面的鏡像 q導(dǎo)體平面0zddqqpxo1r2r導(dǎo)體平面在空間的電位為點(diǎn)電荷q 和鏡像電荷 -q 所產(chǎn)生的電位疊加,即012114qrr12rr電位滿足邊界條件導(dǎo)體平面邊界上:0電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析E 3/23/222222204()()xqxxExyz dxyz d3/23/222222204()()yqyyExyz dxyz d3/23/222222204()()zqz d

12、z dExyz dxyz d1/21/22222220114()()qxyzdxyzd上半空間的電場強(qiáng)度:電位:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析導(dǎo)體表面感應(yīng)電荷 導(dǎo)體表面上感應(yīng)電荷總量 導(dǎo)體表面上感應(yīng)電荷對點(diǎn)電荷的作用力0222 3/22()SnzqdDExyd 222 3/2d dd d2()SSqx yqdx yqxyd 22016zqFad 電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析線電荷對無限大接地導(dǎo)體平面的鏡像u 將無限長的線電荷看作無數(shù)個(gè)點(diǎn)電荷的集合。根據(jù)點(diǎn)電荷對無限大接地導(dǎo)體平面的鏡像原理,可得到線電荷對應(yīng)的鏡像電荷仍為平行于導(dǎo)體表面

13、的線電荷,其電荷密度為u 待求場域 中的電位u 上半空間的電場l(0)y 201ln2lrr120 10 222llrrEaarr電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析點(diǎn)電荷對無限大介質(zhì)平面的鏡像12q11qqRRpdd設(shè)想用鏡像電荷代替界面上極化電荷的作用,并使鏡像電荷和點(diǎn)電荷共同作用,滿足界面上的邊界條件。當(dāng)待求區(qū)域?yàn)榻橘|(zhì)1所在區(qū)域時(shí),在邊界之外設(shè)一鏡像電荷 q11144qqRR12244RRqqDaaRR介質(zhì)1中任一點(diǎn)的電位和電位移矢量分別為:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析22qqpR 當(dāng)待求區(qū)域?yàn)榻橘|(zhì)2所在區(qū)域時(shí),設(shè)一鏡像電荷q位于區(qū)

14、域1中,且位置與 q 重合,同時(shí)將整個(gè)空間視為均勻介質(zhì)2。于是區(qū)域2中任一點(diǎn)的電位和電位移矢量分別為:224qqR224RqqDaR在分界面(R = R= R)上,應(yīng)滿足電位和電位移矢量法向分量相等的邊界條件:1212nnDD12qqqqqqqq1212qqq 電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析電介質(zhì)中的電場分布:電介質(zhì)中的電場分布:12111212qq 1212qq qqqqq22電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析線電流對無限大磁介質(zhì)平面的鏡像n 當(dāng)計(jì)算上半空間的磁場時(shí) 可認(rèn)為整個(gè)空間充滿磁導(dǎo)率為1的磁介質(zhì),在下半空間有一鏡像電流I,與I關(guān)

15、于分界面對稱(如圖所示)。上半空間任一點(diǎn)的磁場為122IIHaarr 設(shè)想用鏡像電流代替磁化電流的作用,并在界面上保持原有邊界條件不變電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析n 當(dāng)計(jì)算下半空間磁場時(shí) 可認(rèn)為整個(gè)空間充滿磁導(dǎo)率為2的磁介質(zhì),在上半空間有一鏡像電流I,與電流I 位置重合(如圖)。下半空間任一點(diǎn)的磁場為n 在分界面(r = r= r)上,磁場滿足邊界條件:1t2tHH1n2nBB1tsinsin22IIHrr111ncoscos22IIBrr2tsin2IIHr22n()cos2IIBr2121III22IIHar電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析

16、靜態(tài)場分析討論:2121III (1) 當(dāng) 時(shí) , ,說明 與 方向相同, 與 方向相反。210,0IIIIII(2) 當(dāng) 時(shí) , ,說明 與 方向相反, 與 方向相同。210,0IIIIII221212222121limlim()2IBHIIrr(3) 當(dāng) 有限 時(shí) , ,此時(shí)鐵磁質(zhì)中 但 。 1220B ,IIII 20H (4) 當(dāng) 有限 時(shí) , ,此時(shí) 中磁場 為原來的兩倍。 221,IIII 電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析II 2121II 上半空間的磁場:當(dāng) 有限 時(shí) ,12磁壁電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析II 2上半空

17、間的磁場:當(dāng) 有限 時(shí) ,12電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析點(diǎn)電荷對半無限大接地導(dǎo)體角域的鏡像由兩個(gè)半無限大接地導(dǎo)體平面形成角形邊界,當(dāng)其夾角 為整數(shù)時(shí),該角域中的點(diǎn)電荷將有個(gè)鏡像電荷,該角域中的場可以用鏡像法求解u 當(dāng)n=2時(shí):u 該角域外有3個(gè)鏡像電荷q1、 q2和q3 ,位置如圖所示。其中 ,nn123,qqqqqq電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析u 當(dāng)n=3時(shí):u 角域夾角為/n,n為整數(shù)時(shí),有(2n1)個(gè)鏡像電荷,它們與水平邊界的夾角分別為 u n不為整數(shù)時(shí),鏡像電荷將有無數(shù)個(gè),鏡像法就不再適用了;當(dāng)角域夾角為鈍角時(shí),鏡像法亦

18、不適用。角域外有5個(gè)鏡像電荷,大小和位置如圖所示。所有鏡像電荷都正、負(fù)交替地分布在同一個(gè)圓周上,該圓的圓心位于角域的頂點(diǎn),半徑為點(diǎn)電荷到頂點(diǎn)的距離。 (2),1,2,(1)(2)mmnn及3q3qqqqqq電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析6. 點(diǎn)電荷對導(dǎo)體球面的鏡像u 設(shè)一點(diǎn)電荷q位于半徑 a 為的接地導(dǎo)體球附近,與球心的距離為d,如圖所示。待求場域?yàn)閞 a區(qū)域,邊界條件為導(dǎo)體球面上電位為零。adqadqq 設(shè)想在待求場域之外有一鏡像電荷q,位置如圖所示。根據(jù)鏡像法原理, q 和 q在球面上的電位為零。電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析點(diǎn)電

19、荷與接地導(dǎo)體球周圍的電場aa電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析0121()04cqqrr21rqqrqabqda qabqda aqqd2abd22 1/22224 1/2014(2cos)(2cos)qardrdd rdraaadqqc1r2rb在球面上任取一點(diǎn)c,則MN( ,)r空間任意點(diǎn) 的電位:( ,)r電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析導(dǎo)體球不接地:aqqd2abdaqqqda a電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析u導(dǎo)體球不接地:根據(jù)電荷守恒定律,導(dǎo)體球上感應(yīng)電荷代數(shù)和應(yīng)為零,就必須在原有的鏡像電荷之外再附

20、加另一鏡像電荷 q=q 22 1/22224 1/2014(2cos)(2cos)qaardrdd rdraadr0044qqad球外任一點(diǎn)電位: 球面上任一點(diǎn)電位:為了保證球面為等位面的條件,鏡像電荷q應(yīng)位于球心處 。電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析例3: 有一接地導(dǎo)體球殼,內(nèi)外半徑分別為a1和a2,在球殼內(nèi)外各 有一點(diǎn)電荷q1和q2 ,與球心距離分別為d1和d2 ,如圖所示。求:球殼外、球殼中和球殼內(nèi)的電位分布。u 球殼外:邊界為r = a2的導(dǎo)體球面,邊界條件為根據(jù)球面鏡像原理,鏡像電荷 的位置和大小分別為球殼外區(qū)域任一點(diǎn)電位為 2(, , )0a 222 1

21、/22 224 1/2022222214(2cos)(2cos)aqrd rdd rd raa外2q2222abd2222aqqd 2a2d2q1q1a1d解:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析u 球殼內(nèi):邊界為r = a1的導(dǎo)體球面,邊界條件為 根據(jù)球面鏡像原理,鏡像電荷 的位置和大小分別為 球殼內(nèi)區(qū)域任一點(diǎn)電位為 u 球殼中: 球殼中為導(dǎo)體區(qū)域,導(dǎo)體為等位體,球殼中的電位為零。1( , , )0a 1q2111abd1111aqqd 22 1/201112 224 1/2111114(2cos)(2cos)qrd rdad rd raa內(nèi)用鏡像法解題時(shí),一定要注意

22、待求區(qū)域及其邊界條件,對邊界以外的情況不予考慮。電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析線電荷對導(dǎo)體圓柱面的鏡像u 待求區(qū)域:u 邊界條件:柱面上電位為零 設(shè)想鏡像線電荷 位于對稱面上,且與圓柱軸線距離為b,則導(dǎo)體柱面上任一點(diǎn)的電位表示為其中:ral1200lnln22llrr 面2212cosradad2222cosrabab電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析00ln()ln()22llMdaab 00ln()ln()22llNdaab ll 201ln2lrcr2212cosrrddr2222cosrrbbr2abd兩平行線電荷的電位分布 在柱

23、面上取兩個(gè)特殊點(diǎn)M和N,則空間電位為:其中:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析帶有等量異號(hào)電荷的平行長直導(dǎo)體圓柱間的鏡像 設(shè)想將兩導(dǎo)體圓柱面上的電荷用兩根平行的線電荷等效,線電荷密度分別為 和 ,其位置如圖所示。ll 其等位面是許多圓柱面,若讓其中兩個(gè)等位面分別與兩圓柱面重合,即滿足兩導(dǎo)體柱面為等位面的邊界條件。根據(jù)惟一性定理,待求區(qū)域中的場就由這兩個(gè)等效線電荷產(chǎn)生。電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析兩電軸在空間產(chǎn)生的電位為等位面方程為201ln2lrr222221()()x cyrkrx cy22222212()()11kckxcykk21

24、12111kxck12121ckak2222211kxck22221ckbk22212abdxd22222abdxd221cxan 通常把這兩個(gè)等效的線電荷稱為電軸,該方法也稱為電軸法12xxd2221xca2222xcb電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析例4:圖為一偏心電纜,內(nèi)導(dǎo)體半徑為a,外導(dǎo)體半徑為b,兩幾何軸線間距離為d,求兩等效電軸的位置。只要能求出假想電軸的位置,使兩個(gè)導(dǎo)體圓柱面分別和電場中兩個(gè)等位面重合,就滿足了導(dǎo)電圓柱面為等位面的邊界條件。根據(jù)電軸法n兩等效電軸的位置分別位于(c,0)和(c,0)處。2221xbc2222xac12dxx22212db

25、axd 22222dabxd 221cxb電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析五、分離變量法u理論基礎(chǔ)u惟一性定理u分離變量法的主要步驟 根據(jù)給定的邊界形狀,選擇適當(dāng)?shù)淖鴺?biāo)系,正確寫出該坐標(biāo)系下拉普拉斯的表達(dá)式,及給定的邊界條件。 經(jīng)變量分離將偏微分方程化簡為常微分方程,并給出常微分方程的通解,其中含有待定常數(shù)。 利用給定的邊界條件,確定通解中的待定常數(shù),獲得滿足邊界條件的特解。電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析直角坐標(biāo)系中二維拉普拉斯方程分離變量法u 本征方程的求解(1)當(dāng) 時(shí)22220 xy( , )( ) ( )x yX x Y y222

26、21d( )1 d ( )0( )d( ) dX xY yX xxY yyu 本征函數(shù)2221d( )( )dxX xkX xx2221d( )( )dyY ykY yy220 xykk0 xykk01020( )XxA xA01020( )YyB yB110201020( , )()()x yA xAB yBu 本征方程u 本征值電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析212121( , )(cossin)(coshsinh)mmmmmmmmmx yAk xAk x Bk yBk y(2)當(dāng) 時(shí),設(shè)20 xk(1,2,)xmkkmjj12( )eemmk xk xmmmX

27、xAA12( )eemmk yk ymmmYyBB或222d( )( )dmX xk X xx222d( )( )dmY yk Y yy220 xykk由ymkjk本征方程為:則:1212( )cossin( )coshsinhmmmmmmmmmmXxAk xAk xYyBk yBk y電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析312121( , )(coshsinh)(cossin)mmmmmmmmmx yAk xAk x Bk yBk y12( )eemmk xk xmmmXxAAjj12( )eemmk yk ymmmYyBB1212( )coshsinh( )coss

28、inmmmmmmmmmmXxAk xAk xYyBk yBk y(3)當(dāng) 時(shí),設(shè)20 xk j(1,2,)xmkkm220 xykk由ymkk222d( )( )dmX xk X xx222d( )( )dmY yk Y yy 本征方程為:或則:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析u應(yīng)用疊加定理,可將三種解疊加組成拉普拉斯方程的通 , )()()cossincoshsinhcoshsinhcossinmmmmmmmmmmmmmmmmmmx yA xAB yBAk xAk xBk yBk yAk xAk xBk yBk yn 三種解

29、的特點(diǎn): 第一種解中,X(x)和Y(y)為常數(shù)或線性函數(shù),說明它們最多只有一個(gè)零點(diǎn); 第二種解中, X(x)為三角函數(shù),有多個(gè)零點(diǎn), Y(y)為雙曲函數(shù),最多只有一個(gè)零點(diǎn); 第三種解中, X(x)為雙曲函數(shù),最多有一個(gè)零點(diǎn),而Y(y)為三角函數(shù),有多個(gè)零點(diǎn)。電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析解: 選直角坐標(biāo)系,電位函數(shù)滿足二維拉普拉斯方程 邊界條件: 例5:一接地金屬槽如圖所示,其側(cè)壁和底壁電位均為零,頂蓋與側(cè)壁絕緣,其電位為U0,求槽內(nèi)電位分布。22220(1)xy0000(2)00(3)000(4)0(5)xybxaybyxaUybxa電磁場與電磁波電磁場與電磁波

30、第第4章章 靜態(tài)場分析靜態(tài)場分析設(shè) ,代入式(1) 中得:( , )( ) ( )x yX x Y y22221d( )1d( )0( )d( )dX xY yX xxY yy2221d( )( )dxX xkX xx 2221d( )( )dyY ykY yy 220 xykk( )sinmmX xAk xsin0mk a(1,2, )mmkma根據(jù)邊界條件(2)與(3)可知,函數(shù)X(x)沿x方向有兩個(gè)零點(diǎn),因此X(x)應(yīng)為三角函數(shù)形式,又因?yàn)閄(0) =0,所以X(x)應(yīng)選取正弦函數(shù),即由邊界條件(3)得:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析對應(yīng)的Y(y)函數(shù)為雙曲

31、函數(shù),且Y(0)=0,于是Y(y)的形式為( )sinh()mmY yBya此時(shí),電位可表示為由邊界條件(5)知 其中:1( , )sin()sinh()mmmmx yCxyaa011sin()sinh()sin()mmmmmmmUCxbCxaaasinh()mmmCCba 電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析01sin()mmmUCxa0001sin()dsin()sin()daammnmnUxxCxxxaaa2001sin()sin()dsin ()d2aanmnmaCmnnCxx xCx xaaa0002sind(1,3,5,)aaUnUx xnan對上式兩邊同乘

32、以 ,再對x從0到a進(jìn)行積分,即sin()nxa電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析04(1,3,5,)nUCnn 04(1,3,5,)sinh()nUCnnnba01,3,4( ,)sin()sinh()sinh()mUmmx yxymaamba滿足邊界條件的特解為:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析例6: 一矩形區(qū)域邊界條件如圖所示,求區(qū)域內(nèi)的電位分布。12001V3100sinybabxyo解: 從圖可見,在 x=0 和 x=a 的兩個(gè)邊界上出現(xiàn)非零情況,將原問題分解為如圖所示兩種邊界條件情況。令101011V10abxyo2020202

33、3100sinybabxyo電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析(1)求 :1( , )x y11( ,)sin()sinh()mmmmx yCyxbb14sinh()mVCmmab2211220 xy11111000000000yxaybxaxybVxayb101011V10abxyo類似于“例5”求解過程, 形式為:1( , )x y由非零邊界條件確定mC011,3,4( ,)sin()sinh()sinh()mVmmx yyxmbbmab則:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析21( , )sin()sinh()mmmmx yDyaxbb1

34、3100sin()sin()sinh()mmmmyDyabbb2222220 xy222200 000003100sin()0 0yxaybxaxaybyxybb210033( , )sin()sinh()3sinh()x yyaxbbab可見,當(dāng)m3時(shí),當(dāng)m3時(shí):0mD33100/sinh()Dab(2)求求 :2( , )x y其解為:由非零邊界條件得20202023100sinybabxyo則:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析直角坐標(biāo)系中三維拉普拉斯方程分離變量法2222220 xyz( , , )( ) ( ) ( )x y zX xY y Z z22222

35、21 d1 d1 d0dddXYZXxYyZz根據(jù)本征值的不同取值,可以得到類似于二維情況的解的形式。2221d( )( )dxX xkX xx 2221d( )( )dyY ykY yy 2221d( )( )dzZ zkZ zz 2220 xyzkkk電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析u 為了在給定邊界條件下,選取適當(dāng)?shù)耐ń夂瘮?shù)形式,教材表4-5中給出了一些 的典型組合。表中 和 是由邊界條件確定的實(shí)數(shù)。( , , )x y zmknk電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析解: 選直角坐標(biāo)系,電位函數(shù)滿足三維拉普拉斯方程及邊界條件222222

36、0 xyz例7: 求圖示長方形體積內(nèi)的電位函數(shù)。0000,000,0000,000,0000,00,0 xybzcxaybzcyxazcybxazczxaybVzcxayb由邊界條件可以判斷,特征函數(shù)可表示為:( )sinmmX xAk x( )sinnnY yBk y( )sinhmnmnZ zCkz電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析( , , )0a y zsin0mk a 1,2,3,mmkma( , , )0 x b zsin0nk b 1,2,3,nnknb由邊界條件可得:11( , , )sin()sin()sinh()mnmnmnnmx y zDk xk

37、 ykz電位函數(shù)可表示為:2220 xyzkkk由本征值關(guān)系可得:22 1/2()() mnmnkab2211( , , )sin()sin()sinh ()()mnnmmnmnx y zDxyzabab則:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析最后,由最后一個(gè)邊界條件得:22 1/2011sin()sin()sinh()() mnnmmnmnVDxycabab上式兩端同乘以 ,并對x, y積分,利用三角函數(shù)正交性可得:sin()sin()stxyab0222 1/2161,3,5,;1,3,5, sinh()() mnVDmnmnmncab于是所求的電位函數(shù)為:0222

38、 1/ 21,3,5,1,3,5,22 1/ 216( , ) sinh()() sin()sin()sinh()() nmVx y zmnmncabmnmnxyzabab電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析3. 3. 圓柱坐標(biāo)系中的分離變量法圓柱坐標(biāo)系中的分離變量法 2222211()0rr rrrz( , , )( )( ) ( )rzR rZ z 22222dd1 d1 d()0ddddrRZrrR rrZz2221 ddn 2221 ddzZkZz2221 dd()()0ddzRnrkrRrrr該方程的解常用的有四種情況該方程的解常用的有四種情況該方程的解有兩種

39、情況該方程的解有兩種情況該方程的解有三種情況該方程的解有三種情況電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析( )coshsinhmmmmZ zCk zDk zu 的解:的解:00( )AB ( )cossinnnAnBn 20n (1) 當(dāng)時(shí),20n (2) 當(dāng)時(shí),( )(2) 由于,限定了n必須為正整數(shù)。00( )Z zC zD( )cossinmmmmZ zCk zDk z ,20zk jzmkkmk(2) 當(dāng)時(shí),設(shè) 為任意非零實(shí)數(shù)。20zk zmkkmk(3) 當(dāng) 時(shí),設(shè),為任意非零實(shí)數(shù)。20zk 時(shí),(1) 當(dāng)2221 ddn u 的的解解: :2221 ddzZkZ

40、z電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析2221 dd()()0ddzRnrkrR rrru 的解的解22222dd()0ddzRRrrk rn Rrr0000( )()()zzR rA Jk rB Nk r20n (1)當(dāng)時(shí),方程化簡為零階貝塞爾方程,其解的形式為( )nnnnR rA rB r20zk (2)當(dāng)時(shí),方程化簡為歐拉方程,其解的形式為( )lnR rArB( )()()nnznnzR rA Jk rB Nk r220znk(3)當(dāng)時(shí),方程的解為220,0znk(4) 當(dāng)時(shí),方程的解為n階貝塞爾方程階貝塞爾方程電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分

41、析靜態(tài)場分析例8:在一均勻電場中,放置一無限長的圓柱導(dǎo)體,圓柱的軸線與電場強(qiáng)度的方向垂直,如圖所示,求放入圓柱導(dǎo)體后的電場分布。解:按題意應(yīng)選用圓柱坐標(biāo)系。導(dǎo)體為等位體,導(dǎo)體內(nèi)部不存在電場,因而0(0)Era( )cosnAn ( )nnnnR rC rD r1( , )cos()nnnnnnrAnC rD r20n ( )根據(jù)題意可確定,的形式為220,0zkn( )R r當(dāng)時(shí),對應(yīng)的函數(shù)的形式為( , )r于是,電位的形式為:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析放置圓柱導(dǎo)體之后,使均勻場發(fā)生畸變,但遠(yuǎn)離導(dǎo)體的地方,電場仍然保持均勻狀態(tài)。0 xEE a由 得相應(yīng)的電位

42、函數(shù)為:E 00( , )|cosrrE xE r 10( , )()cosDrE rr 未放置圓柱導(dǎo)體前,空間電場為均勻場1n 110ACE 比較上兩式可知,當(dāng)時(shí),2n 0nA 當(dāng)時(shí),于是:1( , )cos()nnnnnnrAnC rD r已知:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析202(1)cosraEErr 202(1)sinaEErrmax02EEE 根據(jù) ,得到,0,rara及可見,在處,電場強(qiáng)度最大。20( , )()cos(,02)arE rarr 故圓柱體外部空間的電位為10( , )()cos0DaE aa 10Daa21Da 邊界條件為圓柱導(dǎo)體表面

43、為等位面,取該等位面電位為零,即于是電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析4. 4. 球坐標(biāo)系中的分離變量法球坐標(biāo)系中的分離變量法 222222111()(sin)0sinsinrrrrrr( , , )( )( )( )rR r 2222sinddsindd1 d()(sin)0dddddRrRrr2221 ddm 21 dd()(1)ddRrn nRrr221dd(sin)(1)0sinddsinmn n 該方程只討論電位與方位角無關(guān)的情況該方程只討論電位與方位角無關(guān)的情況該方程的解有兩種情況該方程的解有兩種情況該方程的解有兩種情況該方程的解有兩種情況電磁場與電磁波電

44、磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析0,20m ( )A 20n 100( )R rAB r20n (1)( )nnnnR rA rB r20n (1)時(shí),(2)時(shí),的情況不存在。當(dāng)電位與方位角無關(guān)時(shí),即:2221 ddm 的解的解 的解的解21 dd()(1)ddRrn nR rr電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析0nQ當(dāng)或時(shí),是發(fā)散的。而電位應(yīng)為有限值,所以nQ的解中不含有 項(xiàng)。(1)0( , )(cos )nnnnnnrA rB rP( , )r通過以上分析,電位 的通解為nAnB和 根據(jù)給定的邊界條件來確定。 20n 0000( )(cos )(cos

45、 )A PB Q 20n ( )(cos )(cos )nnnnA PB Q (1)時(shí),(2)時(shí),勒讓德方程 1dd(sin)(1)0sinddn n 221dd(sin)(1)0sinddsinmn n 的解的解電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析六、復(fù)變函數(shù)法六、復(fù)變函數(shù)法 u 利用復(fù)變函數(shù)中的一些解析函數(shù)性質(zhì)可以直接表示某些具有導(dǎo)體邊界的二維場。u 利用復(fù)變函數(shù)中解析函數(shù)的保角變換性質(zhì),可以將復(fù)雜的場域邊界變換成比較簡單的邊界,這給具有復(fù)雜場域邊界的二維電磁場的求解提供了一種比較簡便的方法。u 利用復(fù)變函數(shù)求解電磁場邊值問題的方法,稱為復(fù)變函數(shù)法。電磁場與電磁波電

46、磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析u 復(fù)變函數(shù):自變量為復(fù)數(shù)的函數(shù)。 ( )( , )j ( , )W zu x yv x yu 解析函數(shù)uvxyuvyx 柯西黎曼條件是判斷復(fù)變函數(shù)是否為解析函數(shù)的必要和充分條件。 1. 復(fù)變函數(shù)的性質(zhì)復(fù)變函數(shù)的性質(zhì) 柯西黎曼條件:自變量jzxy-復(fù)變函數(shù)1uvrr1vurr 或電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析u 復(fù)變函數(shù)的幾個(gè)重要性質(zhì)復(fù)變函數(shù)的幾個(gè)重要性質(zhì)(1)復(fù)變函數(shù)中解析函數(shù)的實(shí)部和虛部都滿足二維拉普拉斯方程。uvxyuvyx 柯西黎曼條件:222uvxy x 222uvyx y 可見:22220uuxy同理:222

47、20vvxy柱坐標(biāo)中:22211()0uurrrrr22211()0vvrrrrr電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析(2)在坐標(biāo)變量為x及y的復(fù)平面z上,解析函數(shù)W(z)的實(shí)部u(x,y)等于常數(shù)的曲線與虛部v(x,y)等于常數(shù)的曲線處處正交。令:1 ,2( , )( , )u x yCv x yC對這兩條曲線求梯度:xyuuuaaxy xyvvvaaxy 可見:0u vu vu uu uuvxxyyxyyx 說明:u(x,y)等于常數(shù)的曲線與虛部v(x,y)等于常數(shù)的曲線處處正交。電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析(3) 解析函數(shù)W(z)可將復(fù)平面z上的兩條相交曲線保角變換到坐標(biāo)變量為u+jv的復(fù)平面W上。保角變換的含義:電磁場與電磁波電磁場與電磁波第第4章章 靜態(tài)場分析靜態(tài)場分析2 . 復(fù)變函數(shù)法復(fù)變函數(shù)法 復(fù)(電)位函數(shù) ( )( , )j ( , )W zu x yv x y 若已

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論