北大附中高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)數(shù)與微分經(jīng)點(diǎn)答疑四_第1頁(yè)
北大附中高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)數(shù)與微分經(jīng)點(diǎn)答疑四_第2頁(yè)
北大附中高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)數(shù)與微分經(jīng)點(diǎn)答疑四_第3頁(yè)
北大附中高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)數(shù)與微分經(jīng)點(diǎn)答疑四_第4頁(yè)
北大附中高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)數(shù)與微分經(jīng)點(diǎn)答疑四_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、學(xué)科:數(shù)學(xué)教學(xué)內(nèi)容:導(dǎo)數(shù)與微分經(jīng)點(diǎn)答疑(四)11什么是高階導(dǎo)數(shù)?我們知道函數(shù)的導(dǎo)數(shù)是而導(dǎo)數(shù)仍是可導(dǎo)的,它的導(dǎo)數(shù)是這種導(dǎo)數(shù)的導(dǎo)數(shù)就稱為對(duì)y對(duì)x的二階導(dǎo)數(shù)一般地我們有:函數(shù)yf(x)的導(dǎo)數(shù)仍是x的函數(shù),若函數(shù)的導(dǎo)數(shù)存在,則稱的導(dǎo)數(shù)為yf(x)的二階導(dǎo)數(shù)記作相應(yīng)地,把yf(x)的導(dǎo)數(shù)叫作函數(shù)yf(x)的一階導(dǎo)數(shù)同樣,若二階導(dǎo)數(shù)的導(dǎo)數(shù)存在,則稱其導(dǎo)數(shù)為yf(x)的三階導(dǎo)數(shù)記作一般地,若n1階導(dǎo)數(shù)的導(dǎo)數(shù)存在,則稱其導(dǎo)數(shù)為yf(x)的n階導(dǎo)數(shù)記作這里的n稱為導(dǎo)數(shù)的階數(shù)二階及二階以上的導(dǎo)數(shù)統(tǒng)稱為高階導(dǎo)數(shù)若yf(x)具有n階導(dǎo)數(shù),也常說(shuō)成函數(shù)f(x)為n階可導(dǎo)由以上高階導(dǎo)數(shù)的定義可以看出,要求n階導(dǎo)數(shù),需要求

2、出n1階導(dǎo)數(shù),要求n1階導(dǎo)數(shù),需要求出n2階導(dǎo)數(shù),要求二階導(dǎo)數(shù),需要求出一階導(dǎo)數(shù),因此要求高階導(dǎo)數(shù),只需要進(jìn)行一連串通常求導(dǎo)數(shù)的運(yùn)算即可例1 求n次多項(xiàng)式的各階導(dǎo)數(shù)思路啟迪首先求出f(x)的一階、二階、三階等階數(shù)較低的n階導(dǎo)數(shù),從中找出導(dǎo)數(shù)與導(dǎo)數(shù)階數(shù)的關(guān)系可見,每經(jīng)一次求導(dǎo)運(yùn)算,多項(xiàng)式的次數(shù)就降低一次繼續(xù)求導(dǎo)下去,易知:是一個(gè)常數(shù),由此有即n次多項(xiàng)式的一切階數(shù)高于n的導(dǎo)數(shù)都等于零思路啟迪要證明這個(gè)等式成立,而在此等式的左邊含有,只要能正確求y對(duì)x的兩階導(dǎo)數(shù),將y及代入等式左邊并驗(yàn)證其為零即可規(guī)范證法例4求ysinx的n階導(dǎo)數(shù)思路啟迪求sinx的n階導(dǎo)數(shù)的關(guān)鍵是找出n階導(dǎo)數(shù)與導(dǎo)數(shù)的階數(shù)的關(guān)系,為

3、此我們可以先求出較低n階導(dǎo)數(shù),從中歸納出導(dǎo)數(shù)與導(dǎo)數(shù)的階數(shù)的關(guān)系即可12怎樣求隱函數(shù)的導(dǎo)數(shù)?前面所討論的函數(shù)求導(dǎo)方法,函數(shù)都是因變量y已經(jīng)寫成自變量x的明顯表達(dá)式y(tǒng)f(x)的形式,這樣的函數(shù)稱為顯函數(shù)但有時(shí)我們所遇到的函數(shù)關(guān)系不是明顯地用顯函數(shù)形式表示的情形如方程2x5y10及它們都表示x、y之間的函數(shù)關(guān)系一般地我們把由方程F(x,y)0表示的因變量y自變量x的函數(shù)關(guān)系式y(tǒng)f(x)稱為隱函數(shù)對(duì)于隱函數(shù),有時(shí)可以根據(jù)確定隱函數(shù)關(guān)系的方程找出顯函數(shù)形式y(tǒng)f(x),從而可利用前面的求導(dǎo)方法把它的導(dǎo)數(shù)找出來(lái),但有時(shí)要把這個(gè)隱函數(shù)表示成顯函數(shù)的形式是比較復(fù)雜的,有時(shí)甚至是不可能的,這時(shí)要利用前面的方法求導(dǎo)

4、數(shù)就比較困難,甚至不可能,因此,我們有必要尋求隱函數(shù)的求導(dǎo)方法實(shí)際上,對(duì)于隱函數(shù)我們不需要把它表示成顯函數(shù)的形式,就可以把它的導(dǎo)數(shù)求出來(lái)方法是:將確定隱函數(shù)的方程的兩端同時(shí)對(duì)x求導(dǎo)(注意到y(tǒng)表示x的函數(shù)),求導(dǎo)過(guò)程中,遇到變量y,把y看中間變量,先對(duì)y求導(dǎo),再乘以y對(duì)x的導(dǎo)數(shù)(即遇到變量y要利用復(fù)合函數(shù)的求導(dǎo)法則)這樣,我們可以得到一個(gè)關(guān)于的一元一次方程,解出即可思路啟迪由于y是x的函數(shù),可將y寫成x的函數(shù)的形式y(tǒng)(x),則可寫成思路啟迪由于方程所確定的是y為x的函數(shù),可將y寫成x的形式y(tǒng)(x),則該方程可寫成于是由隱函數(shù)的求導(dǎo)法則得規(guī)范解法將方程兩端對(duì)x求導(dǎo),并利用函數(shù)的求導(dǎo)法則得13什么是

5、對(duì)數(shù)求導(dǎo)法?它主要適用于哪些類型函數(shù)的求導(dǎo)?對(duì)數(shù)求導(dǎo)法是將函數(shù)yf(x)兩端取絕對(duì)值(由于求導(dǎo)之后絕對(duì)值同時(shí)去掉,因此常把取絕對(duì)值這一步省略,認(rèn)為f(x)為正值,即lnf(x)有意義)然后再兩端取對(duì)數(shù)(取自然對(duì)數(shù),它的導(dǎo)數(shù)形式比較簡(jiǎn)單)這時(shí)我們就把它化成隱函數(shù),然后再求出它的導(dǎo)數(shù)這種把顯函數(shù)取對(duì)數(shù)化成隱函數(shù)再求導(dǎo)的方法稱為對(duì)數(shù)求導(dǎo)法它常用于由若干因式的積、商或根式組成的函數(shù)和冪指函數(shù)的求導(dǎo)運(yùn)算對(duì)數(shù)求導(dǎo)法的優(yōu)點(diǎn)是:它把積變成和,把商變成差,把冪指變成積易知,和差的求導(dǎo)運(yùn)算要比乘、商的求導(dǎo)運(yùn)算簡(jiǎn)單具體步驟如下:(1)兩端取絕對(duì)值(常略去)之后,再取自然對(duì)數(shù)(2)等式兩端分別對(duì)自變量求導(dǎo)舉例如下思路

6、啟迪在前面我們利用恒等式求出了該函數(shù)的導(dǎo)數(shù),在此我們將利用隱函數(shù)求導(dǎo)法求它的導(dǎo)數(shù)這里可將等式兩端取對(duì)數(shù)首先把它變成隱函數(shù),再利用隱函數(shù)求導(dǎo)法規(guī)范解法兩端取對(duì)數(shù)lnyg(x)lnf(x),兩端對(duì)x求導(dǎo)思路啟迪該函數(shù)是由兩個(gè)函數(shù)的商構(gòu)成,而商的分子和分母都是由三個(gè)函數(shù)的積所構(gòu)成,若直接利用商與積的求導(dǎo)法則就比較麻煩,但若借助于兩端取對(duì)數(shù),再利用隱函數(shù)的求導(dǎo)方法就比較簡(jiǎn)單規(guī)范解法兩端取對(duì)數(shù)lnyln(x1)ln(x2)ln(x3)ln(x4)ln(x5)ln(x6),兩端對(duì)x求導(dǎo)14怎樣利用導(dǎo)數(shù)判別函數(shù)的單調(diào)性?我們知道,如果函數(shù)f(x)在區(qū)間(a,b)內(nèi)是增函數(shù)或是減函數(shù),那么我們就說(shuō)函數(shù)f(x)

7、在區(qū)間(a,b)具有單調(diào)性,區(qū)間(a,b)稱為f(x)的單調(diào)區(qū)間那么怎樣利用導(dǎo)數(shù)判別函數(shù)的單調(diào)性呢?設(shè)函數(shù)f(x)在(a,b)可導(dǎo),則曲線yf(x)處處有切線如圖3-4,曲線上每點(diǎn)的切線與x軸正向的夾角是銳角,即這時(shí)函數(shù)在(a,b)是增函數(shù)如圖3-5曲線上每點(diǎn)的切線與x軸正向的夾角為鈍角,即此時(shí)函數(shù)f(x)在(a,b)是減函數(shù)一般地,設(shè)函數(shù)yf(x)在區(qū)間I內(nèi)可導(dǎo),如果對(duì)任意的點(diǎn)xI,有則f(x)在I內(nèi)是增函數(shù),若對(duì)于任意的點(diǎn)xI,有則f(x)在I內(nèi)為減函數(shù)思路啟迪利用導(dǎo)數(shù)判別函數(shù)單調(diào)性,首先要求函數(shù)的導(dǎo)數(shù),然后確定導(dǎo)數(shù)在哪些范圍內(nèi)是正值,哪些范圍內(nèi)是負(fù)值,從而確定出函數(shù)的增減區(qū)間即當(dāng)x(,1

8、)(3,)時(shí),f(x)是增函數(shù)即當(dāng)x(1,3)時(shí),f(x)是減函數(shù)(圖3-6)即當(dāng)x(,0)時(shí),f(x)是增函數(shù)即當(dāng)x(0,)時(shí)f(x)是減函數(shù)(如圖3-7)分析上面的例題,當(dāng)x<1或x>3時(shí),單調(diào)增加,當(dāng)1<x<3時(shí),f(x)單調(diào)減少,而當(dāng)x1或x3時(shí),當(dāng)x<0時(shí)單調(diào)增加;當(dāng)x>0時(shí),f(x)單調(diào)減少,而當(dāng)x0時(shí),這說(shuō)明使點(diǎn)x可能是f(x)單調(diào)增加與單調(diào)減少的分界點(diǎn)因此討論可導(dǎo)函數(shù)的單調(diào)性,我們也可以按照以下步驟去作:即求出f(x)的導(dǎo)數(shù),解出使的點(diǎn),用這些點(diǎn)將f(x)的定義域分成若干個(gè)區(qū)間,然后在各個(gè)區(qū)間上判別的符號(hào),從而可得f(x)在各個(gè)區(qū)間上的單調(diào)性

9、后兩步可用一個(gè)表格來(lái)完成列表由上表可知:f(x)在(1)與(1,)上是單調(diào)增加的;在(1,1)上是單調(diào)減少的15怎樣利用導(dǎo)數(shù)求可導(dǎo)函數(shù)的極值?已知函數(shù)在點(diǎn)O附近的任意點(diǎn)x,都有即函數(shù)在點(diǎn)O的值要比它附近的任意點(diǎn)的函數(shù)值都要?。ㄈ鐖D3-8),這時(shí),我們稱函數(shù)在點(diǎn)O取極小值而函數(shù)在點(diǎn)O附近的任意點(diǎn)x,都有,即函數(shù)在點(diǎn)O的值要比它附近的每一點(diǎn)的函數(shù)值都要大(如圖3-9),這時(shí),我們就說(shuō)在點(diǎn)O取極大值一般地,設(shè)函數(shù)f(x)在點(diǎn)附近內(nèi)有定義,若對(duì)點(diǎn)附近的每一點(diǎn)x,都有,我們就稱它為f(x)在點(diǎn)取極大值,是f(x)在點(diǎn)處的極大值,記作稱為函數(shù)f(x)的極大值點(diǎn)如果對(duì)點(diǎn)附近的所有點(diǎn)x,都有,我們就稱函數(shù)f(

10、x)在點(diǎn)取極小值,是f(x)在點(diǎn)處的極小值,記作稱為函數(shù)f(x)的極小值點(diǎn)極大值與極小值統(tǒng)稱為極值,極大值點(diǎn)與極小值點(diǎn)統(tǒng)稱為極值點(diǎn)已知函數(shù)的導(dǎo)數(shù)是,在點(diǎn)O的值是0,即在點(diǎn)O的左側(cè),即當(dāng)x<0時(shí),有導(dǎo)數(shù);在點(diǎn)O的右側(cè),即當(dāng)x>0時(shí),導(dǎo)數(shù)函數(shù)在點(diǎn)O取極小值函數(shù)的導(dǎo)數(shù)是在點(diǎn)O的左側(cè),即當(dāng)x<0時(shí),有導(dǎo)數(shù);在點(diǎn)O的右側(cè),即當(dāng)時(shí),有導(dǎo)數(shù)函數(shù)在點(diǎn)O取極大值一般地,當(dāng)函數(shù)f(x)在點(diǎn)的附近可導(dǎo)時(shí),我們判別函數(shù)f(x)在點(diǎn)處取極大(小)值的方法是:(1)若在點(diǎn)的左側(cè),右側(cè)則是極小值(2)若在點(diǎn)的左側(cè),右側(cè)則是極大值從上面的討論,我們可以看到,若f(x)在點(diǎn)可導(dǎo),且在點(diǎn)取極值,則有,即可導(dǎo)的極

11、值點(diǎn)滿足但是滿足的點(diǎn)不一定是極值點(diǎn),如,在O點(diǎn)處的值,但O不是f(x)的極值點(diǎn)一般地,我們求函數(shù)極值的步驟是:()判別函數(shù)f(x)的導(dǎo)數(shù)在每個(gè)根兩側(cè)的符號(hào),并根據(jù)的符號(hào)確定f(x)在是否取極值思路啟迪求出并令得其根等,用將函數(shù)的定義域分成若干個(gè)區(qū)間,在每個(gè)區(qū)間上用的符號(hào)列出y的增減性所以,當(dāng)x1時(shí),有極小值;當(dāng)x1時(shí),有極大值列表16怎樣利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最大值與最小值?對(duì)于實(shí)際問題該怎樣解決?在生產(chǎn)實(shí)踐和工程技術(shù)中,常常遇到這樣一類問題:在一定條件下,怎樣使“產(chǎn)品最多”、“收益最大”、“用料最省”、“成本最低”和“效率最高”等問題,這類問題在數(shù)學(xué)上有時(shí)可歸納為求某函數(shù)的最大值或最小值

12、問題如圖311,在閉區(qū)間a,b上,對(duì)于a,b,都有f(x)f(b),f(b)就稱為f(x)在a,b上的最小值;對(duì)于a,b,有就稱為f(x)在a,b上的最大值一般地,設(shè)f(x)在區(qū)間I上有定義,若存在點(diǎn),使對(duì)每一點(diǎn)xa,b都有,則稱f(x)在I上有最大值,記為M,即;若存在點(diǎn),使對(duì)每一點(diǎn)xa,b都有,則稱函數(shù)f(x)在I上有最小值,記為m即一般地,若yf(x)在a,b上連續(xù),則f(x)在a,b上必有最大值與最小值但函數(shù)yf(x)在開區(qū)間(a,b)內(nèi)連續(xù),則不一定有最大值與最小值如在(0,)內(nèi)連續(xù),但f(x)在(0,)內(nèi)沒有最大值與最小值從圖311可以看出,若函數(shù)的最小值在區(qū)間a,b的內(nèi)部間取得,

13、則必在極小值點(diǎn)取得;若函數(shù)的最大值在區(qū)間a,b的內(nèi)部取得,則必在極大值點(diǎn)取得最大值與最小值也可能在端點(diǎn)取得,而在極值的討論中,我們可以看出,對(duì)于可導(dǎo)函數(shù)來(lái)說(shuō),極值點(diǎn)可能在使的點(diǎn)x處取得因此,對(duì)于可導(dǎo)函數(shù)來(lái)說(shuō),它的最大值與最小值若在區(qū)間的內(nèi)部取得,只可能在使得的點(diǎn)取得根據(jù)以上分析,若f(x)在a,b上連續(xù)且可導(dǎo),則求f(x)在a,b上的最大值與最小值的步驟為:(2)將f(a),f(b),進(jìn)行比較,其中最大的一個(gè)就是最大值,最小的一個(gè)就是最小值思路啟迪因?yàn)樗o函數(shù)在3,4上可導(dǎo),所以,只需把的點(diǎn)與端點(diǎn)的值比較而可得出比較可得,函數(shù)f(x)在x4取得它在3,4上的最大值f(4)142;在x1取得它在3,4上的最小值f(1)7對(duì)于一個(gè)實(shí)際問題而言,如果在(a,b)內(nèi)部的根只有一個(gè),而從實(shí)際含義分析知在(a,b)內(nèi)一定有最大值或最小值存在那么一般來(lái)說(shuō),就是所要求的最大值或最小值例

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論