版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、橢圓專題練習(xí)1.【2017浙江,2】橢圓的離心率是ABCD2.【2017課標(biāo)3,理10】已知橢圓C:,(a>b>0)的左、右頂點(diǎn)分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為ABCD3.【2016高考浙江理數(shù)】已知橢圓C1:+y2=1(m>1)與雙曲線C2:y2=1(n>0)的焦點(diǎn)重合,e1,e2分別為C1,C2的離心率,則()Am>n且e1e2>1 Bm>n且e1e2<1 Cm<n且e1e2>1 Dm<n且e1e2<14.【2016高考新課標(biāo)3理數(shù)】已知為坐標(biāo)原點(diǎn),是橢圓:的左焦點(diǎn),分別為的左,右
2、頂點(diǎn).為上一點(diǎn),且軸.過(guò)點(diǎn)的直線與線段交于點(diǎn),與軸交于點(diǎn).若直線經(jīng)過(guò)的中點(diǎn),則的離心率為()(A)(B)(C)(D)5.【2015高考新課標(biāo)1,理14】一個(gè)圓經(jīng)過(guò)橢圓的三個(gè)頂點(diǎn),且圓心在x軸的正半軸上,則該圓的標(biāo)準(zhǔn)方程為.6.【2016高考江蘇卷】如圖,在平面直角坐標(biāo)系中,是橢圓的右焦點(diǎn),直線與橢圓交于兩點(diǎn),且,則該橢圓的離心率是.7.【2017課標(biāo)1,理20】已知橢圓C:(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(1,),P4(1,)中恰有三點(diǎn)在橢圓C上.(1)求C的方程;(2)設(shè)直線l不經(jīng)過(guò)P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為1,證明
3、:l過(guò)定點(diǎn).8.【2017課標(biāo)II,理】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C:上,過(guò)M作x軸的垂線,垂足為N,點(diǎn)P滿足。(1) 求點(diǎn)P的軌跡方程;(2)設(shè)點(diǎn)Q在直線上,且。證明:過(guò)點(diǎn)P且垂直于OQ的直線l過(guò)C的左焦點(diǎn)F。9.【2017山東,理21】在平面直角坐標(biāo)系中,橢圓:的離心率為,焦距為.()求橢圓的方程;()如圖,動(dòng)直線:交橢圓于兩點(diǎn),是橢圓上一點(diǎn),直線的斜率為,且,是線段延長(zhǎng)線上一點(diǎn),且,的半徑為,是的兩條切線,切點(diǎn)分別為.求的最大值,并求取得最大值時(shí)直線的斜率.10.【2017天津,理19】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線的焦點(diǎn),到拋物線的準(zhǔn)線的距離為.(I)求橢圓的方程
4、和拋物線的方程;(II)設(shè)上兩點(diǎn),關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)(異于點(diǎn)),直線與軸相交于點(diǎn).若的面積為,求直線的方程.11.【2017江蘇,17】如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為, ,離心率為,兩準(zhǔn)線之間的距離為8.點(diǎn)在橢圓上,且位于第一象限,過(guò)點(diǎn)作直線的垂線,過(guò)點(diǎn)作直線的垂線.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若直線的交點(diǎn)在橢圓上,求點(diǎn)的坐標(biāo).F1OF2xy(第17題)12.【2016高考新課標(biāo)1卷】(本小題滿分12分)設(shè)圓的圓心為A,直線l過(guò)點(diǎn)B(1,0)且與x軸不重合,l交圓A于C,D兩點(diǎn),過(guò)B作AC的平行線交AD于點(diǎn)E.(I)證明為定值,并寫(xiě)出點(diǎn)E的軌跡方程;(II)設(shè)點(diǎn)
5、E的軌跡為曲線C1,直線l交C1于M,N兩點(diǎn),過(guò)B且與l垂直的直線與圓A交于P,Q兩點(diǎn),求四邊形MPNQ面積的取值范圍.13.【2016高考山東理數(shù)】(本小題滿分14分)平面直角坐標(biāo)系中,橢圓C:?的離心率是,拋物線E:的焦點(diǎn)F是C的一個(gè)頂點(diǎn).(I)求橢圓C的方程;(II)設(shè)P是E上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線與C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過(guò)P且垂直于x軸的直線交于點(diǎn)M.(i)求證:點(diǎn)M在定直線上;(ii)直線與y軸交于點(diǎn)G,記的面積為,的面積為,求的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).【答案】();()(i)見(jiàn)解析;(ii)的最大值為,此時(shí)點(diǎn)的坐標(biāo)為【解析】
6、試題分析:()根據(jù)橢圓的離心率和焦點(diǎn)求方程;()(i)由點(diǎn)P的坐標(biāo)和斜率設(shè)出直線l的方程和拋物線聯(lián)立,進(jìn)而判斷點(diǎn)M在定直線上;(ii)分別列出,面積的表達(dá)式,根據(jù)二次函數(shù)求最值和此時(shí)點(diǎn)P的坐標(biāo).試題解析:()(i)設(shè),由可得,所以直線的斜率為,因此直線的方程為,即.設(shè),聯(lián)立方程得,由,得且,因此,將其代入得,因?yàn)?,所以直線方程為.聯(lián)立方程,得點(diǎn)的縱坐標(biāo)為,即點(diǎn)在定直線上.(ii)由(i)知直線方程為,令得,所以,又,所以,所以,令,則,當(dāng),即時(shí),取得最大值,此時(shí),滿足,所以點(diǎn)的坐標(biāo)為,因此的最大值為,此時(shí)點(diǎn)的坐標(biāo)為.考點(diǎn):1.橢圓、拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì);2.直線與圓錐曲線的位置關(guān)系;3
7、. 二次函數(shù)的圖象和性質(zhì).14.【2015江蘇高考,18】(本小題滿分16分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且右焦點(diǎn)F到左準(zhǔn)線l的距離為3.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)F的直線與橢圓交于A,B兩點(diǎn),線段AB的垂直平分線分別交直線l和AB于點(diǎn)P,C,若PC=2AB,求直線AB的方程.【答案】(1)(2)或【解析】試題分析(1)求橢圓標(biāo)準(zhǔn)方程,只需列兩個(gè)獨(dú)立條件即可:一是離心率為,二是右焦點(diǎn)F到左準(zhǔn)線l的距離為3,解方程組即得(2)因?yàn)橹本€AB過(guò)F,所以求直線AB的方程就是確定其斜率,本題關(guān)鍵就是根據(jù)PC=2AB列出關(guān)于斜率的等量關(guān)系,這有一定運(yùn)算量.首先利用直線方程與橢
8、圓方程聯(lián)立方程組,解出AB兩點(diǎn)坐標(biāo),利用兩點(diǎn)間距離公式求出AB長(zhǎng),再根據(jù)中點(diǎn)坐標(biāo)公式求出C點(diǎn)坐標(biāo),利用兩直線交點(diǎn)求出P點(diǎn)坐標(biāo),再根據(jù)兩點(diǎn)間距離公式求出PC長(zhǎng),利用PC=2AB解出直線AB斜率,寫(xiě)出直線AB方程.(2)當(dāng)軸時(shí),又,不合題意當(dāng)與軸不垂直時(shí),設(shè)直線的方程為,將的方程代入橢圓方程,得,則,的坐標(biāo)為,且若,則線段的垂直平分線為軸,與左準(zhǔn)線平行,不合題意從而,故直線的方程為,則點(diǎn)的坐標(biāo)為,從而因?yàn)?,所以,解得此時(shí)直線方程為或【考點(diǎn)定位】橢圓方程,直線與橢圓位置關(guān)系15.【2016高考天津理數(shù)】(本小題滿分14分)設(shè)橢圓()的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為原點(diǎn),為橢圓的離心率.()求橢圓的
9、方程;()設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率的取值范圍.【答案】()()【解析】試題分析:()求橢圓標(biāo)準(zhǔn)方程,只需確定量,由,得,再利用,可解得,()先化簡(jiǎn)條件:,即M再OA中垂線上,再利用直線與橢圓位置關(guān)系,聯(lián)立方程組求;利用兩直線方程組求H,最后根據(jù),列等量關(guān)系解出直線斜率.取值范圍試題解析:(1)解:設(shè),由,即,可得,又,所以,因此,所以橢圓的方程為.(2)()解:設(shè)直線的斜率為(),則直線的方程為.設(shè),由方程組,消去,整理得.解得,或,由題意得,從而.由()知,設(shè),有,.由,得,所以,解得.因此直線的方程為.所以,直線的斜率的取
10、值范圍為.考點(diǎn):橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì),直線方程16.【2015高考山東,理20】平面直角坐標(biāo)系中,已知橢圓的離心率為,左、右焦點(diǎn)分別是,以為圓心以3為半徑的圓與以為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓上.()求橢圓的方程;()設(shè)橢圓,為橢圓上任意一點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),射線交橢圓于點(diǎn).( i )求的值;(ii)求面積的最大值.【答案】(I);(II)( i )2;(ii) .【解析】試題分析:(I)根據(jù)橢圓的定義與幾何性質(zhì)列方程組確定的值,從而得到橢圓的方程;(II)(i)設(shè),由題意知,然后利用這兩點(diǎn)分別在兩上橢圓上確定的值; (ii)設(shè),利用方程組結(jié)合韋達(dá)定理求出弦長(zhǎng),選將的面積表
11、示成關(guān)于的表達(dá)式,然后,令,利用一元二次方程根的判別式確定的范圍,從而求出的面積的最大值,并結(jié)合(i)的結(jié)果求出面積的最大值.試題解析:(I)由題意知,則 ,又可得 ,所以橢圓C的標(biāo)準(zhǔn)方程為.(II)由(I)知橢圓E的方程為,(i)設(shè),由題意知因?yàn)?又,即 ,所以,即 .所以因?yàn)橹本€與軸交點(diǎn)的坐標(biāo)為所以的面積令 ,將代入橢圓C的方程可得由,可得 由可知因此 ,故當(dāng)且僅當(dāng),即時(shí)取得最大值由(i)知,面積為 ,所以面積的最大值為 .17.【2015高考陜西,理20】(本小題滿分12分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過(guò)兩點(diǎn),的直線的距離為(I)求橢圓的離心率;(II)如圖,是圓的一條直徑,若橢圓經(jīng)
12、過(guò),兩點(diǎn),求橢圓的方程【答案】(I);(II)【解析】試題分析:(I)先寫(xiě)過(guò)點(diǎn),的直線方程,再計(jì)算原點(diǎn)到該直線的距離,進(jìn)而可得橢圓的離心率;(II)先由(I)知橢圓的方程,設(shè)的方程,聯(lián)立,消去,可得和的值,進(jìn)而可得,再利用可得的值,進(jìn)而可得橢圓的方程試題解析:(I)過(guò)點(diǎn),的直線方程為,則原點(diǎn)到直線的距離,由,得,解得離心率.(II)解法一:由(I)知,橢圓的方程為. (1)依題意,圓心是線段的中點(diǎn),且.易知,不與軸垂直,設(shè)其直線方程為,代入(1)得設(shè)則由,得解得.從而.于是.由,得,解得.故橢圓的方程為.解法二:由(I)知,橢圓的方程為. 因此直線方程為,代入(2)得所以,.于是.由,得,解得
13、.故橢圓的方程為.考點(diǎn):1、直線方程;2、點(diǎn)到直線的距離公式;3、橢圓的簡(jiǎn)單幾何性質(zhì);4、橢圓的方程;5、圓的方程;6、直線與圓的位置關(guān)系;7、直線與圓錐曲線的位置.18.【2016高考浙江理數(shù)】(本題滿分15分)如圖,設(shè)橢圓(a1).(I)求直線y=kx+1被橢圓截得的線段長(zhǎng)(用a、k表示);(II)若任意以點(diǎn)A(0,1)為圓心的圓與橢圓至多有3個(gè)公共點(diǎn),求橢圓離心率的取值范圍.【答案】(I);(II)【解析】試題分析:(I)先聯(lián)立和,可得,再利用弦長(zhǎng)公式可得直線被橢圓截得的線段長(zhǎng);(II)先假設(shè)圓與橢圓的公共點(diǎn)有個(gè),再利用對(duì)稱性及已知條件可得任意以點(diǎn)為圓心的圓與橢圓至多有個(gè)公共點(diǎn)時(shí),的取值
14、范圍,進(jìn)而可得橢圓離心率的取值范圍試題解析:(I)設(shè)直線被橢圓截得的線段為,由得,故,因此(II)假設(shè)圓與橢圓的公共點(diǎn)有個(gè),由對(duì)稱性可設(shè)軸左側(cè)的橢圓上有兩個(gè)不同的點(diǎn),滿足記直線,的斜率分別為,且,由(I)知,故因此,因?yàn)槭疥P(guān)于,的方程有解的充要條件是,所以因此,任意以點(diǎn)為圓心的圓與橢圓至多有個(gè)公共點(diǎn)的充要條件為,由得,所求離心率的取值范圍為考點(diǎn):1、弦長(zhǎng);2、圓與橢圓的位置關(guān)系;3、橢圓的離心率19.【2015高考新課標(biāo)2,理20】(本題滿分12分)已知橢圓,直線不過(guò)原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),線段的中點(diǎn)為 ()證明:直線的斜率與的斜率的乘積為定值;()若過(guò)點(diǎn),延長(zhǎng)線段與交于點(diǎn),四邊形
15、能否為平行四邊形?若能,求此時(shí)的斜率,若不能,說(shuō)明理由【答案】()詳見(jiàn)解析;()能,或【解析】()設(shè)直線,將代入得,故,于是直線的斜率,即所以直線的斜率與的斜率的乘積為定值()四邊形能為平行四邊形因?yàn)橹本€過(guò)點(diǎn),所以不過(guò)原點(diǎn)且與有兩個(gè)交點(diǎn)的充要條件是,由()得的方程為設(shè)點(diǎn)的橫坐標(biāo)為由得,即將點(diǎn)的坐標(biāo)代入直線的方程得,因此四邊形為平行四邊形當(dāng)且僅當(dāng)線段與線段互相平分,即于是解得,因?yàn)?,所以?dāng)?shù)男甭蕿榛驎r(shí),四邊形為平行四邊形【考點(diǎn)定位】1、弦的中點(diǎn)問(wèn)題;2、直線和橢圓的位置關(guān)系【名師點(diǎn)睛】()題中涉及弦的中點(diǎn)坐標(biāo)問(wèn)題,故可以采取“點(diǎn)差法”或“韋達(dá)定理”兩種方法求解:設(shè)端點(diǎn)的坐標(biāo),代入橢圓方程并作差,
16、出現(xiàn)弦的中點(diǎn)和直線的斜率;設(shè)直線的方程同時(shí)和橢圓方程聯(lián)立,利用韋達(dá)定理求弦的中點(diǎn),并尋找兩條直線斜率關(guān)系;()根據(jù)()中結(jié)論,設(shè)直線方程并與橢圓方程聯(lián)立,求得坐標(biāo),利用以及直線過(guò)點(diǎn)列方程求的值20.【2016高考新課標(biāo)2理數(shù)】已知橢圓的焦點(diǎn)在軸上,是的左頂點(diǎn),斜率為的直線交于兩點(diǎn),點(diǎn)在上,()當(dāng)時(shí),求的面積;()當(dāng)時(shí),求的取值范圍【答案】();().【解析】試題解析:(I)設(shè),則由題意知,當(dāng)時(shí),的方程為,.由已知及橢圓的對(duì)稱性知,直線的傾斜角為.因此直線的方程為.將代入得.解得或,所以.因此的面積.(II)由題意,.將直線的方程代入得.由得,故.由題設(shè),直線的方程為,故同理可得,由得,即.當(dāng)時(shí)
17、上式不成立,因此.等價(jià)于,即.由此得,或,解得.因此的取值范圍是.考點(diǎn):橢圓的性質(zhì),直線與橢圓的位置關(guān)系.21.【2015高考四川,理20】如圖,橢圓E:的離心率是,過(guò)點(diǎn)P(0,1)的動(dòng)直線與橢圓相交于A,B兩點(diǎn),當(dāng)直線平行與軸時(shí),直線被橢圓E截得的線段長(zhǎng)為.(1)求橢圓E的方程;(2)在平面直角坐標(biāo)系中,是否存在與點(diǎn)P不同的定點(diǎn)Q,使得恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1);(2)存在,Q點(diǎn)的坐標(biāo)為.【解析】(1)由已知,點(diǎn)在橢圓E上.因此,解得.所以橢圓的方程為.所以,若存在不同于點(diǎn)P的定點(diǎn)Q滿足條件,則Q點(diǎn)的坐標(biāo)只可能為.下面證明:對(duì)任意的直線,均有.當(dāng)直線
18、的斜率不存在時(shí),由上可知,結(jié)論成立.當(dāng)直線的斜率存在時(shí),可設(shè)直線的方程為,A、B的坐標(biāo)分別為.聯(lián)立得.其判別式,所以,.因此.易知,點(diǎn)B關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為.又,所以,即三點(diǎn)共線.所以.故存在與P不同的定點(diǎn),使得恒成立.22.【2016年高考北京理數(shù)】(本小題14分)已知橢圓C:()的離心率為,的面積為1.(1)求橢圓C的方程;(2)設(shè)的橢圓上一點(diǎn),直線與軸交于點(diǎn)M,直線PB與軸交于點(diǎn)N.求證:為定值.【答案】(1);(2)詳見(jiàn)解析.【解析】試題分析:(1)根據(jù)離心率為,即,的面積為1,即,橢圓中列方程求解;(2)根據(jù)已知條件分別求出,的值,求其乘積為定值.所以橢圓的方程為.(2)由()知
19、,設(shè),則.當(dāng)時(shí),直線的方程為.令,得.從而.直線的方程為.令,得.從而.所以.當(dāng)時(shí),所以.綜上,為定值.考點(diǎn):1.橢圓方程及其性質(zhì);2.直線與橢圓的位置關(guān)系.23.【2016年高考四川理數(shù)】(本小題滿分13分)已知橢圓E:的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的三個(gè)頂點(diǎn),直線與橢圓E有且只有一個(gè)公共點(diǎn)T.()求橢圓E的方程及點(diǎn)T的坐標(biāo);()設(shè)O是坐標(biāo)原點(diǎn),直線l平行于OT,與橢圓E交于不同的兩點(diǎn)A、B,且與直線l交于點(diǎn)P證明:存在常數(shù),使得,并求的值.【答案】(),點(diǎn)T坐標(biāo)為(2,1);().【解析】試題分析:()由橢圓兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的三個(gè)頂點(diǎn)可得,從而可得,橢圓的標(biāo)準(zhǔn)方
20、程中可減少一個(gè)參數(shù),再利用直線和橢圓只有一個(gè)公共點(diǎn),聯(lián)立方程,方程有兩個(gè)相等實(shí)根,解出b的值,從而得到橢圓的標(biāo)準(zhǔn)方程;()首先設(shè)出直線方程為,由兩直線方程求出點(diǎn)坐標(biāo),得,同時(shí)設(shè)交點(diǎn),把方程與橢圓方程聯(lián)立后消去得的二次方程,利用根與系數(shù)關(guān)系,得,再計(jì)算,比較可得值.試題解析:(I)由已知,即,所以,則橢圓E的方程為.由方程組得.方程的判別式為,由,得,此方程的解為,所以橢圓E的方程為.點(diǎn)T坐標(biāo)為(2,1).由方程組可得.方程的判別式為,由,解得.由得.所以,同理,所以.故存在常數(shù),使得.考點(diǎn):橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì).24.【2015高考重慶,理21】如題(21)圖,橢圓的左、右焦點(diǎn)分別為過(guò)的
21、直線交橢圓于兩點(diǎn),且(1)若,求橢圓的標(biāo)準(zhǔn)方程(2)若求橢圓的離心率【答案】(1);(2)【解析】試題解析:(1)本題中已知橢圓上的一點(diǎn)到兩焦點(diǎn)的距離,因此由橢圓定義可得長(zhǎng)軸長(zhǎng),即參數(shù)的值,而由,應(yīng)用勾股定理可得焦距,即的值,因此方程易得;(2)要求橢圓的離心率,就是要找到關(guān)于的一個(gè)等式,題中涉及到焦點(diǎn)距離,因此我們?nèi)匀粦?yīng)用橢圓定義,設(shè),則,于是有,這樣在中求得,在中可建立關(guān)于的等式,從而求得離心率.(1)由橢圓的定義,設(shè)橢圓的半焦距為c,由已知,因此即從而故所求橢圓的標(biāo)準(zhǔn)方程為.由橢圓的定義,,從而由,有又由,知,因此于是解得.解法二:如圖(21)圖由橢圓的定義,,從而由,有又由,知,因此,
22、從而由,知,因此【考點(diǎn)定位】考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì).,直線和橢圓相交問(wèn)題,考查運(yùn)算求解能力25.【2015高考安徽,理20】設(shè)橢圓E的方程為,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,點(diǎn)M在線段AB上,滿足,直線OM的斜率為.(I)求E的離心率e;(II)設(shè)點(diǎn)C的坐標(biāo)為,N為線段AC的中點(diǎn),點(diǎn)N關(guān)于直線AB的對(duì)稱點(diǎn)的縱坐標(biāo)為,求 E的方程.【答案】(I);(II).【解析】(I)由題設(shè)條件知,點(diǎn)的坐標(biāo)為,又,從而,進(jìn)而得,故.(II)由題設(shè)條件和(I)的計(jì)算結(jié)果可得,直線的方程為,點(diǎn)的坐標(biāo)為,設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為,則線段的中點(diǎn)的坐標(biāo)為.又點(diǎn)在直線上,且,從而有解得,所以,故橢圓的方程為.【考點(diǎn)定位】1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年體育教師個(gè)人期末工作總結(jié)
- 2010年高考語(yǔ)文試卷(全國(guó)Ⅱ卷大綱版Ⅱ)(解析卷)
- 《紅色大氣頒獎(jiǎng)》課件
- 故事分鏡設(shè)計(jì)與分析 課件 任務(wù)9:絲竹相間顯和諧;任務(wù)10:峰回路轉(zhuǎn)悟精神
- 虛擬現(xiàn)實(shí)藝術(shù)體驗(yàn)-洞察分析
- 香蕉產(chǎn)業(yè)鏈價(jià)值提升途徑研究-洞察分析
- 宇宙膨脹與常數(shù)演化-洞察分析
- 營(yíng)養(yǎng)法規(guī)與食品科技-洞察分析
- 新型疫苗對(duì)兒童呼吸影響-洞察分析
- 速效救心丸國(guó)際對(duì)比研究-洞察分析
- 2025屆四川省新高考八省適應(yīng)性聯(lián)考模擬演練 生物試卷(含答案)
- 安全生產(chǎn)方案及保證措施
- 非物質(zhì)文化遺產(chǎn)主題班會(huì)之英歌舞課件
- 柯橋區(qū)五年級(jí)上學(xué)期語(yǔ)文期末學(xué)業(yè)評(píng)價(jià)測(cè)試試卷
- 中國(guó)礦業(yè)大學(xué)《自然辯證法》2022-2023學(xué)年期末試卷
- TCWAN 0105-2024 攪拌摩擦焊接機(jī)器人系統(tǒng)技術(shù)條件
- 江蘇省期無(wú)錫市天一實(shí)驗(yàn)學(xué)校2023-2024學(xué)年英語(yǔ)七年級(jí)第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含答案
- 耕地占補(bǔ)平衡系統(tǒng)課件
- 2022年山東師范大學(xué)自考英語(yǔ)(二)練習(xí)題(附答案解析)
- 醫(yī)院工作流程圖較全
- NB/T 11431-2023土地整治煤矸石回填技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論