




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、信號與系統(tǒng)信號與系統(tǒng)信號與系統(tǒng)信號與系統(tǒng)信號抽樣也稱為取樣或采樣,是利用抽樣脈沖序列信號抽樣也稱為取樣或采樣,是利用抽樣脈沖序列 p (t) p (t) 從從連續(xù)信號連續(xù)信號 f (t) f (t) 中抽取一系列的離散樣值,通過抽樣過程得中抽取一系列的離散樣值,通過抽樣過程得到的離散樣值信號稱為抽樣信號,用到的離散樣值信號稱為抽樣信號,用 fs (t) fs (t) 表示。表示。一、信號抽樣一、信號抽樣 )(tf)(F抽樣 ?)(tfs)(sF信號與系統(tǒng)信號與系統(tǒng)一、信號抽樣一、信號抽樣 信號抽樣從連續(xù)信號到離散信號的橋梁,也是對信號信號抽樣從連續(xù)信號到離散信號的橋梁,也是對信號進行數(shù)字處理的
2、第一個環(huán)節(jié)。進行數(shù)字處理的第一個環(huán)節(jié)。周期周期信號信號需解決的問題:需解決的問題: 是否可以包含了是否可以包含了 的全部信息?的全部信息? 也就是也就是 能否不失真地恢復能否不失真地恢復s( )f t( )f ts( )f t( )f t信號與系統(tǒng)信號與系統(tǒng)其中,其中, 為抽樣角頻率,為抽樣角頻率, 為抽樣間隔為抽樣間隔 , mm( )f tF , Ptp ss Ftf抽樣脈沖抽樣脈沖 p (t) p (t) 是一個周期信號,它的頻譜為是一個周期信號,它的頻譜為( )( )2()sjntnnsnnp tPePPn ssT2sTssTf1為抽樣頻率為抽樣頻率信號與系統(tǒng)信號與系統(tǒng)( )( )2()
3、sjntnnsnnp tPePPn 所以抽樣信號的頻譜為所以抽樣信號的頻譜為:1( )( )( )( )( )2(ssf tf tp tFFP在時域抽樣離散化相當于頻域周期化在時域抽樣離散化相當于頻域周期化. ( )()()()snsnnsnFPnFP Fn 抽樣信號的頻譜是原連續(xù)抽樣信號的頻譜是原連續(xù)信號的頻譜以抽樣角頻率信號的頻譜以抽樣角頻率為間隔周期地延拓,頻譜為間隔周期地延拓,頻譜幅度受抽樣脈沖序列的傅幅度受抽樣脈沖序列的傅立葉系數(shù)加權(quán)。立葉系數(shù)加權(quán)。信號與系統(tǒng)信號與系統(tǒng)1 1、沖激抽樣、沖激抽樣 若抽樣脈沖是沖激串,則這若抽樣脈沖是沖激串,則這種抽樣稱為沖激抽樣或理想抽種抽樣稱為沖激
4、抽樣或理想抽樣。樣。信號與系統(tǒng)信號與系統(tǒng)1 1、沖激抽樣、沖激抽樣s( )()np ttnT( )( )( )() ()sssnf tf tp tf nTtnTsTTtnsnTttTPsss1de )(122j -T11( )()( ) =()2ssnsnsnP FnFFFnT沖激序列的傅立葉系數(shù)為沖激序列的傅立葉系數(shù)為所以沖激抽樣信號的頻譜為所以沖激抽樣信號的頻譜為 抽樣信號的頻譜抽樣信號的頻譜 是以是以 s s 為周期等為周期等幅地重復幅地重復信號與系統(tǒng)信號與系統(tǒng)1 1、沖激抽樣、沖激抽樣信號與系統(tǒng)信號與系統(tǒng)ms mms 幾點認識幾點認識 倍。倍。差差幅度幅度含原信號的全部信息含原信號的全
5、部信息包包時時sss ,1,0 1TFTFn 性延拓。性延拓。的周期的周期即即新的頻率成分新的頻率成分有有為周期的連續(xù)譜為周期的連續(xù)譜以以 FF , 2sso sFs1Tm s s 現(xiàn)原信號?,F(xiàn)原信號。濾除高頻成分,即可重濾除高頻成分,即可重截止頻率截止頻率為為其增益其增益器,器,若接一個理想低通濾波若接一個理想低通濾波 3mscms T信號與系統(tǒng)信號與系統(tǒng)2 2、周期矩形脈沖抽樣、周期矩形脈沖抽樣 tptftf s :抽抽樣樣信信號號tf(t)otop(t)TStoTSfS(t) 若抽樣脈沖是周期矩形脈若抽樣脈沖是周期矩形脈沖,則這種抽樣稱為周期矩形沖,則這種抽樣稱為周期矩形脈沖抽樣。也稱為
6、自然抽樣。脈沖抽樣。也稱為自然抽樣。信號與系統(tǒng)信號與系統(tǒng)2 2、周期矩形脈沖抽樣、周期矩形脈沖抽樣( )()snp tG tnT( )( )( )( )()ssnf tf tp tf t G tnT)2(SassnnTEP 周期矩形脈沖的傅立葉系數(shù)為周期矩形脈沖的傅立葉系數(shù)為則抽樣信號的頻譜為則抽樣信號的頻譜為 ( )=Sa() ()2nsnsssnsnEFFnTPFn 在矩形脈沖抽樣情況下,抽樣在矩形脈沖抽樣情況下,抽樣信號頻譜也是周期重復,但在重復信號頻譜也是周期重復,但在重復過程中,幅度不再是等幅的,而是過程中,幅度不再是等幅的,而是受到周期矩形脈沖信號的傅立葉系受到周期矩形脈沖信號的傅
7、立葉系數(shù)的加權(quán)。數(shù)的加權(quán)。信號與系統(tǒng)信號與系統(tǒng)幅度不再是等幅,幅度不再是等幅,受到周期矩形脈沖受到周期矩形脈沖信號的傅立葉系數(shù)信號的傅立葉系數(shù) 的加權(quán)的加權(quán)2 2、周期矩形脈沖抽樣、周期矩形脈沖抽樣信號與系統(tǒng)信號與系統(tǒng)但為了便于問題分析,當脈寬較窄時,往往可近似為但為了便于問題分析,當脈寬較窄時,往往可近似為 沖激抽樣。沖激抽樣。沖激抽樣和矩形脈沖抽樣是兩種典型的抽樣沖激抽樣和矩形脈沖抽樣是兩種典型的抽樣在實際中通常采用矩形脈沖抽樣。在實際中通常采用矩形脈沖抽樣。一、信號抽樣一、信號抽樣 信號與系統(tǒng)信號與系統(tǒng)二、時域抽樣定理二、時域抽樣定理 tftfFFtf能能否否恢恢復復由由的的關(guān)關(guān)系系與與
8、需需解解決決的的問問題題sss)(: 信號的采樣信號的采樣第一個問題已經(jīng)解決,第二個問題由時域抽樣定理回答。第一個問題已經(jīng)解決,第二個問題由時域抽樣定理回答。 該定理從理論上回答了為什么可以用數(shù)字信號處理手段該定理從理論上回答了為什么可以用數(shù)字信號處理手段解決連續(xù)時間信號與系統(tǒng)問題。抽樣定理在通信系統(tǒng)、信息解決連續(xù)時間信號與系統(tǒng)問題。抽樣定理在通信系統(tǒng)、信息傳輸理論、數(shù)字信號處理等方面占有十分重要的地位。傳輸理論、數(shù)字信號處理等方面占有十分重要的地位。信號與系統(tǒng)信號與系統(tǒng)或者說,抽樣頻率或者說,抽樣頻率 滿足條件滿足條件sf2smff時域抽樣定理:一個頻譜受限的信號時域抽樣定理:一個頻譜受限的
9、信號 ,如果頻譜,如果頻譜只占據(jù)只占據(jù) 的范圍,則信號的范圍,則信號 可以用等間隔的可以用等間隔的抽樣值抽樣值 唯一地表示,只要抽樣間隔唯一地表示,只要抽樣間隔 其中其中 為信號的最高頻率為信號的最高頻率mm,()sf nT12smTfmf( )f t( )f t 通常把滿足抽樣定理要求的最低抽樣頻率通常把滿足抽樣定理要求的最低抽樣頻率 稱為奈奎斯特頻率,把最大允許的抽樣間隔稱為奈奎斯特頻率,把最大允許的抽樣間隔 稱為奈奎斯特間隔稱為奈奎斯特間隔 。msff2mssffT211信號與系統(tǒng)信號與系統(tǒng)時域抽樣定理的圖解:時域抽樣定理的圖解:( )f t( )sf t( )sf t( )F( )sF
10、( )sFmmmmmssTsT(a) 連續(xù)信號的頻譜(b) 高抽樣速率時抽樣信號的頻譜(c) 低抽樣速率時抽樣信號的頻譜及頻譜混疊000000tttsss頻譜混疊頻譜混疊信號與系統(tǒng)信號與系統(tǒng) 例:求例:求Sa(100t) )100(2tSa的奈奎斯特角頻率的奈奎斯特角頻率. . Sa(100t)cos(200t)解:解: 2002200)(tFt11002002200/ )(2f100)(tft100)(F2002200100100)(200G故 FSa(100t)= m=100m=200則奈奎斯特角頻率為則奈奎斯特角頻率為2信號與系統(tǒng)信號與系統(tǒng))100(2tSa21100)(200G100)
11、(200G.F=mm=200則奈奎斯特角頻率為2=400 mm=300則奈奎斯特角頻率為2=600100)200(200G100)200(200G.FSa(100t)cos(200t)= + 信號與系統(tǒng)信號與系統(tǒng)信號與系統(tǒng)信號與系統(tǒng)信號與系統(tǒng)信號與系統(tǒng)信號與系統(tǒng)信號與系統(tǒng)在滿足抽樣定理的條件下,可用一截止頻率為在滿足抽樣定理的條件下,可用一截止頻率為 的理想低通濾波器,即可從抽樣信號的理想低通濾波器,即可從抽樣信號 fs(t) fs(t) 中無失真恢復原中無失真恢復原連續(xù)信號連續(xù)信號 f (t) f (t) 。三、連續(xù)時間信號的重建三、連續(xù)時間信號的重建 mcsm信號與系統(tǒng)信號與系統(tǒng)由于由于所
12、以,選理想低通濾波器的頻率特性為所以,選理想低通濾波器的頻率特性為若選定若選定 ,則有,則有理想低通濾波器的沖激響應為理想低通濾波器的沖激響應為若選若選 ,那么,那么而沖激抽樣信號為而沖激抽樣信號為三、連續(xù)時間信號的重建三、連續(xù)時間信號的重建 1( )()ssnsFFnTs ( )0 CCTHsmcm( )( )( )sFFH)()(tSaTthCCs2sccssT2( )( )( )( ) ()() ()ssssnnf tf tp tf ttnTf nTtnT信號與系統(tǒng)信號與系統(tǒng)則連續(xù)低通濾波器的輸出信號為則連續(xù)低通濾波器的輸出信號為闡明:闡明: (1 1信號可以展開成抽樣函數(shù)的無窮級數(shù),該
13、級數(shù)的系數(shù)信號可以展開成抽樣函數(shù)的無窮級數(shù),該級數(shù)的系數(shù)等于抽樣值;等于抽樣值; (2 2若在抽樣信號的每個樣點處,畫出一個峰值為若在抽樣信號的每個樣點處,畫出一個峰值為 的的SaSa函數(shù)波形,那么其合成信號就是原連續(xù)信號;函數(shù)波形,那么其合成信號就是原連續(xù)信號;結(jié)論:只要已知各抽樣值,就能唯一地確定出原信號。結(jié)論:只要已知各抽樣值,就能唯一地確定出原信號。三、連續(xù)時間信號的重建三、連續(xù)時間信號的重建 ( )( )() ()()()( )(CssssCsCnnsf th tf nTtnTTSf tf natT SatnT()sf nT信號與系統(tǒng)信號與系統(tǒng)三、連續(xù)時間信號的重建三、連續(xù)時間信號的
14、重建 ( )()()sCsnf tf nT SatnT tf sF Fmmm)()(tSaTthCCsCsTt00sTcc H tfssT0000ttss1m信號與系統(tǒng)信號與系統(tǒng)在實際工程中要做到完全不失真地恢復原連續(xù)信號是不可能的。在實際工程中要做到完全不失真地恢復原連續(xù)信號是不可能的。三、連續(xù)時間信號的重建三、連續(xù)時間信號的重建 原因原因解決方法解決方法有限時間內(nèi)存在的信號,有限時間內(nèi)存在的信號,其頻譜理論上是無限寬的其頻譜理論上是無限寬的在信號被抽樣之前,首先通過低在信號被抽樣之前,首先通過低通濾波器(稱為防混疊低通濾波通濾波器(稱為防混疊低通濾波器)器)理想低通濾波器無法實現(xiàn)理想低通濾
15、波器無法實現(xiàn)逼近理想低通濾波器的特性逼近理想低通濾波器的特性實際中的抽樣一般是實際中的抽樣一般是平頂?shù)木匦蚊}沖抽樣平頂?shù)木匦蚊}沖抽樣在用低通濾波器之前,加一個頻在用低通濾波器之前,加一個頻率響應為率響應為 1/P()的補償濾波器的補償濾波器信號與系統(tǒng)信號與系統(tǒng)假設連續(xù)頻譜函數(shù)為假設連續(xù)頻譜函數(shù)為F() ,抽樣頻譜函數(shù)為,抽樣頻譜函數(shù)為FS() ,即在頻域抽樣有即在頻域抽樣有假設假設 FS() 對應的時間信號為對應的時間信號為 fs (t) ,則有,則有 四、頻域抽樣與頻域抽樣定理四、頻域抽樣與頻域抽樣定理 ( )( ) ()() ()ssssnnFFnF nn 1( )()ssnsf tf t
16、nT闡明:信號在頻率域抽樣離散化等效于在時間域周期化。闡明:信號在頻率域抽樣離散化等效于在時間域周期化。頻域抽樣定理:頻域抽樣定理表明,一個時間受限的信號頻域抽樣定理:頻域抽樣定理表明,一個時間受限的信號 f (t) ,如果時間,如果時間只占據(jù)只占據(jù) 的范圍,則信號的范圍,則信號 f (t)可以用等間隔的頻率抽樣值可以用等間隔的頻率抽樣值 唯一地表示,抽樣間隔為唯一地表示,抽樣間隔為 ,它必須滿足條件,它必須滿足條件 ,其中,其中(,)mmtt()sF nsmstT22ssT 信號與系統(tǒng)信號與系統(tǒng)例:大致畫出圖所示周期矩形信號沖激抽樣后信號的頻譜。例:大致畫出圖所示周期矩形信號沖激抽樣后信號的
17、頻譜。四、頻域抽樣與頻域抽樣定理四、頻域抽樣與頻域抽樣定理 信號與系統(tǒng)信號與系統(tǒng)解:信號在周期化、時域抽樣過程中頻譜的變化規(guī)律:解:信號在周期化、時域抽樣過程中頻譜的變化規(guī)律:(1 1信號在時域周期化,周期為信號在時域周期化,周期為 T T ,則頻譜離散化,則頻譜離散化, 頻譜間隔為頻譜間隔為 0 02/T2/T。(2 2信號在時域抽樣,抽樣間隔為信號在時域抽樣,抽樣間隔為 TS TS ,則頻譜周期化,則頻譜周期化,重復周期為重復周期為 S S2/TS 2/TS 。四、頻域抽樣與頻域抽樣定理四、頻域抽樣與頻域抽樣定理 信號與系統(tǒng)信號與系統(tǒng)矩形單脈沖信號的頻譜矩形單脈沖信號的頻譜0( )2FE
18、Sa010( )2()2mmEFSamT 周期矩形信號的頻譜周期矩形信號的頻譜頻域抽樣頻域抽樣頻譜周期化,重復周期為頻譜周期化,重復周期為 S2/TS 。10001( )()()2ssnssnmsFFnTEnSanmT 時域抽樣時域抽樣抽樣間隔為抽樣間隔為 TS周期矩形信號周期矩形信號四、頻域抽樣與頻域抽樣定理四、頻域抽樣與頻域抽樣定理 信號與系統(tǒng)信號與系統(tǒng)四、頻域抽樣與頻域抽樣定理四、頻域抽樣與頻域抽樣定理 信號與系統(tǒng)信號與系統(tǒng)11( )( )( )( )( )22YFSSH( )( )( )( )( )y tf ts ts th t解:解:信號與系統(tǒng)信號與系統(tǒng)sin1( )( )tf tSa tt( )F利用傅里葉正反變換對稱性求利用傅里葉正反變換對稱性求2( )2( ) FG tSa221( )2()( )2 FSa tGG由傅里葉正反變換對稱性可知由傅里葉正反變換對稱性可知2sin1( )( )( ) Ftf tSa tGt所以所以即即2( )( )FG即即21( )( )2 FG tSa信號與系統(tǒng)信號與系統(tǒng)另外另外( )cos500s tt所以所以( )(50
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年升降圓鋸機項目可行性研究報告
- 2025年半自動機用PP打包帶項目可行性研究報告
- 2025至2030年齒條式電動開窗機項目投資價值分析報告
- 2025至2030年羊肉串電烤箱項目投資價值分析報告
- 2025年電視機面板項目可行性研究報告
- 2025年壓桿套項目可行性研究報告
- 2025年防爆在線氧量分析儀項目可行性研究報告
- 中國冷凍離心機行業(yè)市場調(diào)查研究及投資前景預測報告
- 2025年儲能溫控消防行業(yè)調(diào)研分析報告
- 2022-2027年中國玻璃基板行業(yè)市場供需現(xiàn)狀及投資戰(zhàn)略研究報告
- 人教版(2024新版)七年級上冊英語各單元重點語法知識點講義
- 湘教版三年級美術(shù)下冊教案全冊
- 重癥監(jiān)護-ICU的設置、管理與常用監(jiān)測技術(shù)
- 法律顧問服務投標方案(完整技術(shù)標)
- 加油站合作協(xié)議書
- 新時代勞動教育教程(高校勞動教育課程)全套教學課件
- St完整版本.-Mary's-醫(yī)院睡眠問卷
- 《化妝品穩(wěn)定性試驗規(guī)范》
- 《社區(qū)康復》課件-第四章 腦血管疾病患者的社區(qū)康復實踐
- 生活化教學在小學道德與法治課堂實踐 論文
- 2024年江蘇農(nóng)林職業(yè)技術(shù)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
評論
0/150
提交評論