版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、本節(jié)主要討論求解曲線方程的一般步驟本節(jié)主要討論求解曲線方程的一般步驟.高二數學課件曲線與方程新人教 重點重點:難點難點:求曲線方程的方法、步驟幾何條件的代數化 求曲線方程是解析幾何研究的重要問題之,求曲線方程是解析幾何研究的重要問題之,是高考解答題取材的源泉是高考解答題取材的源泉. .掌握方法和步驟掌握方法和步驟是本課的重點是本課的重點. . 求曲線方程是幾何問題得以代數化研究的求曲線方程是幾何問題得以代數化研究的先決,過程類似數學建模的過程,是課堂先決,過程類似數學建模的過程,是課堂上必須突破的難點上必須突破的難點. .教學重點難點高二數學課件曲線與方程新人教2. 練習:練習:(1) 設設A
2、(2,0)、B(0,2), 能否說能否說線段線段AB的方程為的方程為x+y-2=0? (2) 方程方程x2-y2=0表示的圖形是表示的圖形是_1.復習曲線的方程和方程的曲線的概念復習曲線的方程和方程的曲線的概念3.證明已知曲線的方程的方法和步驟證明已知曲線的方程的方法和步驟1曲線上的點的坐標都是方程的解2以方程的解為坐標的點都在曲線上高二數學課件曲線與方程新人教 | MBMAMP 2222) 7() 3() 1() 1( yxyx.由兩點間的距離公式,點由兩點間的距離公式,點M所適合條件可表示為:所適合條件可表示為:將上式兩邊平方,整理得:將上式兩邊平方,整理得: x+2y7=0 我們證明方程
3、是線段我們證明方程是線段AB的垂直平的垂直平分線的方程分線的方程.(1)由求方程的過程可知,垂直平)由求方程的過程可知,垂直平分線上每一點的坐標都是方程解;分線上每一點的坐標都是方程解;(2)設點)設點M1的坐標(的坐標(x1,y1)是方程)是方程的解,即的解,即: x+2y17=0 x1=72y1解解:設設M(x,y)是線段是線段AB的垂直平分線上任意一點的垂直平分線上任意一點,也就也就是點是點M屬于集合屬于集合例例1.設設A、B兩點的坐標是兩點的坐標是(1,1),(3,7),求,求線段線段AB的垂直平分線的方程的垂直平分線的方程.分析分析:利用坐標法求曲線方程利用坐標法求曲線方程要先有(或
4、建立)坐標要先有(或建立)坐標系系在具體問題中:一種是給定了坐標系;另一種是在具體問題中:一種是給定了坐標系;另一種是沒給定坐標系,需自己建立沒給定坐標系,需自己建立適當適當的坐標系的坐標系高二數學課件曲線與方程新人教; )136(5 )1()28( )1()1(121212121211 yyyyyxAM,)136(5 )7()24( )7()3(11121212121211BMAMyyyyyxBM 即點即點M1在線段在線段AB的垂直平分線上的垂直平分線上.由由(1)、(2)可知方程是線段可知方程是線段AB的垂直平分線的方程的垂直平分線的方程.點點M1到到A、B的距離分別是的距離分別是高二數學
5、課件曲線與方程新人教由上面的例子可以看出,求曲線(圖形)的方由上面的例子可以看出,求曲線(圖形)的方程,一般有下面幾個步驟:程,一般有下面幾個步驟:說明:說明:一般情況下,化簡前后方程的解集是相同的,步一般情況下,化簡前后方程的解集是相同的,步驟(驟(5)可以省略不寫,如有特殊情況,可適當予以說)可以省略不寫,如有特殊情況,可適當予以說明明.既既審查驗證審查驗證特殊情況特殊情況。另外,也可以省略步(。另外,也可以省略步(2),),直接列出曲線方程直接列出曲線方程.(1)用實數對(用實數對(x,y)表示)表示所求曲線上任意一點所求曲線上任意一點M的坐標;(求誰設誰)的坐標;(求誰設誰)(2)寫出
6、適合條件寫出適合條件p的點的點M集合集合P=M|p(M)(3)坐標坐標用坐標表示條件用坐標表示條件p(M),列出方程列出方程f(x,y)=0;(4)化方程化方程f(x,y)=0為最簡形式;為最簡形式;(5)說明化簡后的方程的解為坐標的點都在曲線上說明化簡后的方程的解為坐標的點都在曲線上.高二數學課件曲線與方程新人教例例2.已知一條直線已知一條直線l和它上方的一個點和它上方的一個點A,點,點A到到l的距的距離是離是2,一條曲線也在一條曲線也在l的上方,它上面的每一點到的上方,它上面的每一點到A的的距離減去到距離減去到l的距離的差都是的距離的差都是2,建立適當的坐標系,求建立適當的坐標系,求這條曲
7、線的方程這條曲線的方程.取直線取直線l為為x軸軸,過點過點A且垂直于直線且垂直于直線l的直線為的直線為y軸軸,建立坐標系建立坐標系xOy,解:解:2MAMB22(0)(2)2xyy218yx21(0)8yxx2)列式列式3)代換)代換4)化簡化簡5)審查)審查(0,2)AMB1)建系設點)建系設點因為曲線在因為曲線在x軸的上方,所以軸的上方,所以y0, 所以曲線的方程是所以曲線的方程是 設點設點M(x,y)是曲線上任意一點,是曲線上任意一點,MBx軸,垂足是軸,垂足是B,高二數學課件曲線與方程新人教 通過上述兩個例題了解坐標法的解題方法,通過上述兩個例題了解坐標法的解題方法,明確建立適當的坐標
8、系是求解曲線方程的明確建立適當的坐標系是求解曲線方程的基礎基礎;同時,根據曲線上的點所要適合的條件列出等同時,根據曲線上的點所要適合的條件列出等式,是求曲線方程的式,是求曲線方程的重要環(huán)節(jié)重要環(huán)節(jié),嚴格按步驟解,嚴格按步驟解題是題是基本能力基本能力。高二數學課件曲線與方程新人教 (x,y)yx0例例3RtRtABC中,ABC中,以以AB所所 在直線為在直線為x軸,軸,AB的垂直的垂直平分線為平分線為y軸建立如圖所示的坐標軸建立如圖所示的坐標系系.求直角頂點求直角頂點C的軌跡方程的軌跡方程。解解:由題意知由題意知A(-a,0),),B(a,0),),ABC)0(2| ,aaABBA為兩定點、 分
9、析分析:求軌跡方程時,要求軌跡方程時,要充分挖掘圖形的幾何性充分挖掘圖形的幾何性質,尋找形成曲線的條質,尋找形成曲線的條件所包含的等量關系件所包含的等量關系設點設點C(x,y)高二數學課件曲線與方程新人教C(x,y)B(a,0)xA(-a,0)0法法1:為直角三角形為直角三角形ABC2 22 22 2ACACBCBCABAB22222222axayxay即:222xya三點構成三角形三點構成三角形CBA,故三點不共線,點故三點不共線,點C的縱坐標的縱坐標y0的軌跡方程為的軌跡方程為即直角頂點即直角頂點Cax,222ayx )(ax高二數學課件曲線與方程新人教法法2:CABC 1ACACBCBC
10、kk1 axyaxy222ayx 即程為程為即直角頂點C的軌跡方即直角頂點C的軌跡方,ax222ayx )。(ax 由由A、B、C三點不共線,三點不共線,ABC高二數學課件曲線與方程新人教法法3: 連結連結OC且OBOA CABC aABOC 21222xya三點構成三角形三點構成三角形CBA,222ayx )。(ax ABCO22xya高二數學課件曲線與方程新人教分析4:如圖,設C(x,y). ).CACACBCB 2 22 22 2a ay yx x三角形三角形A,B,C三點構成A,B,C三點構成B(a,0)yC(x,y)xA(-a,0)0跡方程為跡方程為a,即直角頂點C的軌a,即直角頂點
11、C的軌x xa ax xa ay yx x2 22 22 20 0CACACBCB 0 0y yx, x,a ay yx, x,a a高二數學課件曲線與方程新人教分析分析:利用坐標法求曲線方程利用坐標法求曲線方程要先有(或要先有(或建立)坐標系建立)坐標系在具體問題中:在具體問題中:一種是給定了坐標系;另一種一種是給定了坐標系;另一種是沒給定坐標系,需自己建立是沒給定坐標系,需自己建立適當適當的坐標系的坐標系如何建立適當坐標系呢?如何建立適當坐標系呢?¥探索性練習¥探索性練習 已知線段已知線段ABAB的長為的長為6 6,動點,動點P P到到A A,B B的距離平的距離平方和為方和為2626,求
12、動點,求動點P P的軌跡方程(課本的軌跡方程(課本P37P37習題習題2.1A2.1A組第組第3 3題)。題)。高二數學課件曲線與方程新人教#建立建立坐標系的基本原則坐標系的基本原則:(1)定點、定線段常選在坐標軸上定點、定線段常選在坐標軸上(2)原點有時選在定點原點有時選在定點(3)充分利用對稱性,坐標軸可選為對稱軸)充分利用對稱性,坐標軸可選為對稱軸結論結論:1.坐標系不同雖曲線形狀一樣其方程卻不同坐標系不同雖曲線形狀一樣其方程卻不同.2.要注意選擇幾何圖形與坐標系的適當相對要注意選擇幾何圖形與坐標系的適當相對位置,以簡化方程形式位置,以簡化方程形式.高二數學課件曲線與方程新人教v本節(jié)學習了一種方法本節(jié)學習了一種方法-直接法求曲線方程直接法求曲線方程; ;v求曲線方程時求曲線方程時, ,這五個步驟不一定要全部這五個步驟不一定要全部實施實施. .如第二步、第五步。如第二步、第五步。v注意注意: :(1)(1)建標要適當;建標要適當; (2) (2)化簡變形要考查等價與否化簡變形要考查等價與否( (即考即考察曲線的完備性和純粹性察曲線的完備性和純粹性).).v直接法求曲線方程五個步驟的實質是直接法求曲線方程五個步驟的實質是將產生將產生曲線的幾何條件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版高空作業(yè)吊車轉讓與安全培訓合同3篇
- 2024年美容美發(fā)店租賃協議范本版B版
- 建立客戶服務評價與改進機制
- 數碼產品設計師的工作要求
- 2024年虛擬現實技術研發(fā)與合作合同
- 2024年研發(fā)合作協議延期
- 2024年股權變動授權合同
- 2024年經濟型酒店聘用協議
- 2025年植皮粘合用生物粘合劑項目合作計劃書
- 2024水庫承包的合同
- 子長市長征文化運動公園項目社會穩(wěn)定風險評估報告
- 浙教版七年級科學上冊期末綜合素質檢測含答案
- 2024年北京市離婚協議書樣本
- 北京郵電大學《操作系統(tǒng)》2022-2023學年期末試卷
- 2023年稅收基礎知識考試試題庫和答案解析
- 雙向進入交叉任職制度
- 合成纖維的熔融紡絲工藝研究考核試卷
- 管道改造施工方案
- GB 44495-2024汽車整車信息安全技術要求
- 2025年全年日歷含農歷(1月-12月)
- 多學科聯合診療(MDT)管理方案
評論
0/150
提交評論