因式分解教學(xué)設(shè)計(jì)_第1頁(yè)
因式分解教學(xué)設(shè)計(jì)_第2頁(yè)
因式分解教學(xué)設(shè)計(jì)_第3頁(yè)
因式分解教學(xué)設(shè)計(jì)_第4頁(yè)
因式分解教學(xué)設(shè)計(jì)_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、因式分解教學(xué)設(shè)計(jì)因式分解是進(jìn)行代數(shù)式恒等變形的重要手段之一,因式分解是在學(xué)習(xí)整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,它不僅在多項(xiàng)式的除法、簡(jiǎn)便運(yùn)算中等有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形提供了必要的基礎(chǔ),那么,以下是小編給大家整理收集的因式分解教學(xué)設(shè)計(jì),供大家閱讀參考。因式分解教學(xué)設(shè)計(jì)1教學(xué)準(zhǔn)備教學(xué)目標(biāo)知識(shí)與能力1了解多項(xiàng)式公因式的意義,初步會(huì)用提公因式法分解因式;2通過(guò)找公因式,培養(yǎng)觀察能力過(guò)程與方法1了解因式分解的概念,以及因式分解與整式乘法的關(guān)系;2了解公因式概念和提取公因式的方法;會(huì)用提取公因式法分解因式情感態(tài)度與價(jià)值觀1在探索提公因式法分解因式的過(guò)程中學(xué)

2、會(huì)逆向思維,滲透化歸的思想方法;2培養(yǎng)觀察、聯(lián)想能力,進(jìn)一步了解換元的思想方法;教學(xué)重難點(diǎn)重點(diǎn):能觀察出多項(xiàng)式的公因式,并根據(jù)分配律把公因式提出來(lái)難點(diǎn): 識(shí)別多項(xiàng)式的公因式教學(xué)過(guò)程一、 新課導(dǎo)入請(qǐng)同學(xué)們想一想?99399能被100整除嗎?解法一:99399=97029999=970200解法二:99399=99(9921)=99(991)(991)=100×99×98=970200(1)已知:x=5,a-b=3,求ax2-bx2的值(2)已知:a=101,b=99,求a2-b2的值你能說(shuō)說(shuō)算得快的原因嗎?解:(1) ax2-bx2=x2(ab)=25×3=75(2

3、) a2-b2=(ab)(ab)=(10199)(10199)=400二、新知探究1、做一做:計(jì)算下列各式:3x(x-2)= _3x2-6xm(a+b+c)= ma+mb+mc(m+4)(m-4)= m2-16(x-2)2= x2-4x+4a(a+1)(a-1)= a3-a根據(jù)左面的算式填空:3x2-6x=(_3x_)(_x-2_)ma+mb+mc=(_m_)(a+b+c_)m2-16=(_m+4)(m-4_)x2-4x+4=(x-2)2a3-a=(a)(a+1)(a-1)左邊一組的變形是什么運(yùn)算?右邊的變形與這種運(yùn)算有什么不同?右邊變形的結(jié)果有什么共同的特點(diǎn)?總結(jié): 把一個(gè)多項(xiàng)式化成了幾個(gè)整

4、式的積的形式,像這樣的式子變形叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式整式乘法 因式分解與整式乘法是互逆過(guò)程 因式分解在ambm=m(a+b)中,m叫做多項(xiàng)式各項(xiàng)的公因式公因式:即每個(gè)單項(xiàng)式都含有的相同的因式提公因式法:如果多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,將多項(xiàng)式寫(xiě)成乘積的形式這種分解因式的方法叫做提公因式法確定公因式的方法:(1)公因式的系數(shù)是多項(xiàng)式各項(xiàng)系數(shù)的最大公約數(shù);(2)字母取多項(xiàng)式各項(xiàng)中都含有的相同的字母;(3)相同字母的指數(shù)取各項(xiàng)中最小的一個(gè),即最低次冪三、例題分析例1 把12a4b3+16a2b3c2分解因式解:12a4b3+16a2b3c2=4a

5、2b3·3a2+ 4a2b3 ·4c2= 4a2b3 (3a2 + 4c2)提公因式后,另一個(gè)因式:項(xiàng)數(shù)應(yīng)與原多項(xiàng)式的項(xiàng)數(shù)一樣;不再含有公因式例2 把2ac(b+2c)- (b+2c)分解因式解:2ac(b+2c) (b+2c)= (b+2c)(2ac-1)公因式可以是數(shù)字、字母,也可以是單項(xiàng)式,還可以是多項(xiàng)式例3 把x3x2x分解因式解:原式(x3x2x)x(x2x1)多項(xiàng)式的第一項(xiàng)是系數(shù)為負(fù)數(shù)的項(xiàng),一般地,應(yīng)提出負(fù)系數(shù)的公因式但應(yīng)注意,這時(shí)留在括號(hào)內(nèi)的每一項(xiàng)的符號(hào)都要改變,且最后一項(xiàng)“x”提出時(shí),應(yīng)留有一項(xiàng)“1”,而不能錯(cuò)解為x(x2x)四、當(dāng)堂訓(xùn)練1(1)9x3y31

6、2x2y18xy3中各項(xiàng)的公因式是 3xy_.(2)5x225x的公因式為 5x .(3)2ab24a2b3的公因式為-2ab2.(4)多項(xiàng)式x21與(x1)2的公因式是x-12如果(x+y)(x2-xy+y2)-(x+y)xy有公因式(x+y),那么另外的因式是 (x-y)2課后小結(jié)1分解因式把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,叫做分解因式,分解因式和整式乘法互為逆運(yùn)算2確定公因式的方法一看系數(shù) 二看字母 三看指數(shù)3提公因式法分解因式步驟(分兩步)第一步 找出公因式;第二步 提公因式.4用提公因式法分解因式應(yīng)注意的問(wèn)題(1)公因式要提盡;(2)某一項(xiàng)全部提出時(shí),這一項(xiàng)除以公因式時(shí)的商是1,

7、這個(gè)1不能漏掉;(3)多項(xiàng)式的首項(xiàng)取正號(hào)板書(shū)一、因式分解把一個(gè)多項(xiàng)式化成了幾個(gè)整式的積的形式,像這樣的式子變形叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式二、提公因式法如果多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,將多項(xiàng)式寫(xiě)成乘積的形式這種分解因式的方法叫做提公因式法ambm=m(a+b)二、例題分析例1、例2、例3、三、當(dāng)堂訓(xùn)練因式分解教學(xué)設(shè)計(jì)2教學(xué)目標(biāo)認(rèn)知目標(biāo):(1)理解因式分解的概念和意義(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。能力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、判斷能力和創(chuàng)新能力,發(fā)展學(xué)生智能,深

8、化學(xué)生逆向思維能力和綜合運(yùn)用能力。情感目標(biāo):培養(yǎng)學(xué)生接受矛盾的對(duì)立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的精神和實(shí)事求是的科學(xué)態(tài)度。目標(biāo)制定的思想1目標(biāo)具體化、明確化,從學(xué)生實(shí)際出發(fā),具有針對(duì)性和可行性,同時(shí)便于上課操作,便于檢測(cè)和及時(shí)反饋。2課堂教學(xué)體現(xiàn)能力立意。3寓德育教學(xué)方法1采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性。2把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,以設(shè)疑感知概括運(yùn)用為教學(xué)程序,充分遵循學(xué)生的認(rèn)知規(guī)律,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高能力。3在課堂教學(xué)中,引導(dǎo)學(xué)生體會(huì)知識(shí)的發(fā)生發(fā)展過(guò)程,堅(jiān)持啟發(fā)式,鼓勵(lì)學(xué)生充分地動(dòng)腦、動(dòng)口、動(dòng)手

9、,積極參與到教學(xué)中來(lái),充分體現(xiàn)了學(xué)生的主動(dòng)性原則。4在充分尊重教材的前提下,融教材練習(xí)、想一想于教學(xué)過(guò)程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓(xùn)練題目,為學(xué)生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。教學(xué)過(guò)程安排一、提出問(wèn)題,創(chuàng)設(shè)情境問(wèn)題:看誰(shuí)算得快?(1)若a=101,b=99,則a2-b2=(a+b)(a-b)=(101+99)(101-99)=400(2)若a=99,b=-1,則a2-2ab+b2=(a-b) 2=(99+1)2 =10000(3)若x=-3,則20x2+60x=20x(x+3)=20x(-3)(-3+3)=0二、觀察分析,探究新知(1)請(qǐng)每題想得最快的同

10、學(xué)談思路,得出最佳解題方法(2)觀察:a2-b2=(a+b)(a-b) 的左邊是一個(gè)什么式子?右邊又是什么形式?a2-2ab+b2 =(a-b) 2 20x2+60x=20x(x+3) (3)類比小學(xué)學(xué)過(guò)的因數(shù)分解概念,(例42=2×3×7 )得出因式分解概念。板書(shū)課題: 因式分解1因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。三、獨(dú)立練習(xí),鞏固新知練習(xí)1下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(x+2)(x-2)=x2-4x2-4=(x+2)(x-2)a2-2ab+b2=(a-b)23a(a+2)=3a2+6a3a2+6a=

11、3a(a+2)2因式分解與整式乘法的關(guān)系:因式分解結(jié)合:a2-b2=(a+b)(a-b)整式乘法說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。(2)xy( )=2x2y-6xy22x2y-6xy2=xy( )(3)2x( )=2x2y-6xy22x2y-6xy2=2x( )四、強(qiáng)化訓(xùn)練,掌握新知:練習(xí)3:把下列各式分解因式:(1)2ax+2ay (2)3mx-6nx (3) x2y+xy2(4) x2+-x (5) x2-0.01(讓學(xué)生上來(lái)板演)五、整理知識(shí),形成結(jié)構(gòu)(即課堂小結(jié))1因式分解的概念 因式分解是整式中的一種恒等變形2因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過(guò)程實(shí)際也是整式乘法的逆向思維的過(guò)程。3利用2中關(guān)系,可以從整式乘法探求因式分解的結(jié)果。4教學(xué)中滲透對(duì)立統(tǒng)一,以不變應(yīng)萬(wàn)變的辯證唯物主義的思想方法。六、布置作業(yè)1作業(yè)本(一)中§7.1節(jié)評(píng)價(jià)與反饋1通過(guò)由學(xué)生自己得出因式分解概念及其與整式乘法的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論